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ABSTRACT 

We study a model of strategic informed traders submitting market orders together with noise traders 

where an uncertainty over the overall participation of strategic and noise traders leads to an uncertainty 

over market depth. Our analysis compares the main case with such uncertainty with the benchmark case 

without it. When liquidity is driven by informed trading (noise trading), expected trading volume is higher 

(lower) and expected price informativeness is lower (higher) in the main case compared with the 

benchmark case. We also analyze the effects of random variation of the aggregate participation, which 

confound the effects of market expansion and thereby possibly lead to higher expected trading volume 

and lower expected price informativeness following market expansion. Further, these results can explain 

a negative volume-volatility relation and a negative impact of transparency reforms on price 

informativeness. 

Keywords: Market depth, liquidity, trading volume, price informativeness 

JEL Classification: D82; G14 
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1 Introduction

The notion of liquidity, which broadly reflects a friction involved in trading for profits, plays an

important role in explaining the observable and policy-relevant pattern of trading volume and

price informativeness. Many previous studies analyze imperfect liquidity in financial markets in

light of strategic trading (e.g., Lee and Kyle (2022), Lou and Rahi (2023), Rostek and Weretka

(2012), Rostek and Weretka (2015)). They shed light on the relationship between market size

and liquidity and provide testable predictions on trading volume and price informativeness, the

latter of which can provide normative implications in various contexts of market expansion or

fragmentation.

These established theoretical results draw on the premise that the participation of traders

and the resulting market depth are common knowledge. It is inherent in most existing frame-

works of strategic trading (e.g., Kyle (1985), Kyle (1989)). In these frameworks, strategic

traders make a precise inference on the price impact of orders, which is endogenously pinned

down by the participation of other traders and their strategic behavior. Despite an advantage

of tractable analysis and the possibility of learning in the long run, this premise is not innocu-

ous. For example, financial market participation is influenced by limited attention, which is

unobservable, and institutional investors are not the exception (e.g., Ben-Raphael et al. (2017)).

Indeed, such limited attention and the resulting uncertainty over market depth are consistent

with Bali et al. (2014)’s finding that the stock market underreacts to stock-level liquidity shocks

in the sense that these liquidity shocks predict future returns in the short run up to 6 months.

This paper presents a tractable analysis of strategic trading relaxing the usual premise of

common knowledge on market depth. We argue that imperfect information on the aggregate

market participation and the resulting Bayesian-rational inference on uncertain market depth

may influence predictions regarding market size, trading volume and price informativeness in

a systematic and qualitative manner.

In this regard, we study a market with strategic and noise traders who can buy or sell a

risky asset. Strategic traders have private information about the asset. However, the market

involves a randomness about the overall participation of strategic and noise traders so that

strategic traders may be uncertain about that. Specifically, these strategic traders form beliefs
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over two possible states of nature: At the first state, only one strategic trader and one noise

trader are randomly chosen to participate in the market, leading to low market depth. At

the second state, all strategic and noise traders participate in the market, leading to higher

market depth. Trade occurs via market orders (e.g., Kyle (1985)): Strategic and noise traders

simultaneously submit market orders to a market-maker who observes the aggregate demand

and then sets the price.

How does an uncertainty over market depth affect expected trading volume and price in-

formativeness in equilibrium? To answer this question, we compare the main case with such

uncertainty with the benchmark case where the overall participation of other traders is common

knowledge after being realized. Key to our analysis is whether liquidity is driven by informed

or noise trading, the former (latter) of which corresponds to a steeper (slower) growth of the

number of participating strategic traders relative to that of noise variance as we move from

the low-liquidity state to the high-liquidity one. In the benchmark case, when liquidity is

driven by informed trading (noise trading), each strategic trader optimally chooses to be less

(more) aggressive as we move from the low-liquidity state to the high-liquidity one. By con-

trast, in the main case, each trader without knowledge on the realized state chooses his trading

aggressiveness to maximize his participation-conditional expectation of trading profits.

Our main results show that expected trading volume is higher (lower) and expected price

informativeness is lower (higher) in the main case compared with those in the benchmark

case when liquidity is driven by informed trading (noise trading). Intuitively, as we move

from the benchmark case to the main case, conditional on the high-liquidity (low-liquidity)

state, strategic traders tilt their aggressiveness toward the optimal one conditional on the

low-liquidity (high-liquidity) state. This means that they trade more (less) aggressively when

liquidity is driven by informed trading (noise trading). As a result, expected trading volume is

higher (lower) conditional on the high-liquidity state and lower (higher) conditional on the low-

liquidity state when liquidity is driven by informed trading (noise trading). The former change

is always dominant in that it determines the sign of change in expected trading volume. On

the other hand, price informativeness conditional on each state changes in the same direction.

In contrast to trading volume, the latter change conditional on the low-liquidity state is always

dominant.
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These main results on expected trading volume and price informativeness shed light on

two opposing economic forces that operate as we move from the benchmark case to the main

case. By the first one arising from asymmetric price impacts across states and the resulting

asymmetry of state-conditional profits, traders’ aggressiveness is tilted toward the optimal one

conditional on the low-liquidity state. By the second one arising from participation-conditional

probabilities of states, traders’ aggressiveness is tilted toward the optimal one conditional on

the high-liquidity state. The opposite signs of changes in expected trading volume and price

informativeness arise from their different weights on these opposite forces: The first one deter-

mines the sign of change in expected trading volume, whereas the second one determines the

sign of change in expected price informativeness.

We conduct further analyses on the effects of market size and its state-wise variation. First,

we investigate how expected trading volume and price informativeness change as the state-wise

variation of aggregate participation increases keeping its average unchanged. Their changes are

divided into those attributed to “randomness” (i.e., aggregate participation becoming state-

dependent and known to strategic traders) and “uncertainty” (i.e., aggregate participation

becoming unknown to informed traders), the latter of which corresponds to the above main

results. The results show a similar insight: such state-wise variation increases (decreases) ex-

pected trading volume and decreases (increases) expected price informativeness when liquidity

is predominantly driven by informed trading (noise trading).

Next, we use these results to confirm our motivating argument that the effects of market size

on trading volume and price informativeness are confounded by a correlation between (average)

market size and the state-wise variation of aggregate participation. With a sufficient number

of strategic traders at the high-liquidity state, meaning that liquidity is driven by informed

trading, the confounding effect via the state-wise variation of aggregate participation may lead

to a negative effect of further increasing the number of strategic traders on expected price

informativeness. This occurs with a contemporary increase in expected trading volume, which

may be of higher order than trading volume with fixed market size in the limit of large number

of strategic traders. More generally, we show that a variety of possible relations among market

size, expected trading volume and expected price informativeness may occur. In particular,

their relation hinges on how market size influences the numbers of strategic and noise traders

7



Lou and Park: Strategic trading with uncertain market depth

at the high-liquidity state as well as the probability of the high-liquidity state.

Our main results provide further empirical and policy implications as follows. First, they

suggest the possibility of large trading volume together with a weak relationship between trading

volume and price volatility, the latter of which coincides with price informativeness in our model.

These outcomes occur because a negative volume-volatility relation can be observed across

different extents of uncertainty over market depth. At the same time, when liquidity is driven

by informed trading, they explain qualitatively higher volume than predicted by the standard

framework with fixed participation. Second, we discuss the effects of enhancing transparency

of financial markets. Focusing on the side of transparency reforms providing information on

the aggregate participation, our results suggest that such transparency reform may have an

unintended consequence of reducing price informativeness when liquidity is driven by noise

trading. It does so by resolving the uncertainty over market depth and thereby reversing the

aforementioned force arising from participation-conditional probabilities of states.

The remainder of this paper is organized as follows. We review the related literature in

Subsection 1.1. In Sections 2 and 3, we introduce and then solve the model of financial markets

with uncertainty over market depth. Our main results are in Sections 4 and 5, and their further

implications are in Section 6. We discuss possible extensions and conclude the paper in Section

7. The Appendix contains all proofs.

1.1 Related literature

The static modeling framework of strategic trading in this paper borrows from Kyle (1985) and

its extension to multiple informed traders (e.g., Edmans and Manso (2011), Kyle and Wang

(1997), Lambert et al. (2018)). The special case of fixed participation in our model (i.e., q = 1)

would be a special case of the models in these previous studies.1

Uncertain market depth and/or numbers of participants have been considered in several

previous studies in the theoretical literature. On the one hand, the dynamic framework of Kyle

(1985) has been extended in this direction. Most of them considered time-varying noise variance

1Their models extend it in alternative directions, such as costly effort to improve firm value (Edmans and

Manso (2011)), investor overconfidence (Kyle and Wang (1997)), and complex information structures (Lambert

et al. (2018)).
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whose stochastic process, which may involve time trends, is known to an informed trader (e.g.,

Collin-Dufresne and Fos (2016), Han et al. (2023)). Hong and Rady (2002) is closer to ours

in that they analyzed the situation of its variance being stochastically persistent and initially

unknown to informed traders. Without learning about its variance over time, the latter’s

framework would operate similarly to the special case of (fixed participation of) single strategic

trader (i.e., LS = 1 and LN ≥ 2) in our model.2 Their focus is the possibility of learning from

past prices and volume. On the other hand, Lauermann and Speit (2023) studied a common-

value auction of a single indivisible good with uncertain number of participating bidders who

are partially informed. The participating bidders infer the number of rivals from a Poisson

prior and prices, resulting in the non-existence of equilibrium in large markets. Compared with

these previous studies, our static modeling framework abstracts from the possibility of learning

from prices.3 Instead, the notion of market depth, which is specific to trading divisible assets,

considered in this paper reflects the aggregate participation of strategic and noise traders, the

former of which is particularly crucial for our motivating argument concerning market size

formally analyzed in Subsection 5.2.

Our analysis contributes to the broad literature on the optimal structure and design of

financial markets. Many previous studies investigated the effects of market expansion or frag-

mentation in various practical contexts such as risk sharing and decentralized exchanges (e.g.,

Kawakami (2017), Malamud and Rostek (2017), Chen and Duffie (2021)) and corporate gover-

nance (e.g., Edmans and Manso (2011)). The literature also suggests that non-obvious effects

of changing market size on price informativeness can be obtained with heterogeneity in per-unit

asset valuations (e.g., Rostek and Weretka (2012), Rostek and Weretka (2015), Lee and Kyle

2In fact, their setting involves multiple strategic traders who always participate in the market regardless of

the variance of noise trade. It is not nested by the main case or the benchmark case of our model in Section 2

where one or LS ≥ 2 informed traders come with one or LN ≥ 1 noise traders, respectively. Nevertheless, their

static equilibrium result does not qualitatively hinge on the (fixed) number of strategic traders. In particular,

it is consistent with Proposition 5 regarding the negative effect of random and uncertain liquidity on individual

trading volume (which is equivalent to expected trading volume in the main case of our model) when liquidity

is driven by noise trading (i.e., LS < L2
N ).

3It could be regarded as a reduced form of dynamic trading where informed traders are myopic and/or the

(time-varying) state of nature is random in that it is not predictable from past prices and trading volume. We

further discuss this point in Section 7.
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(2022), Lou and Rahi (2023)) or that in trader characteristics (e.g., Kacperczyk et al. (2024)),

as detailed in Subsection 5.2. Moreover, strategic trading is relevant for the design of decen-

tralized exchanges, such as clearing (e.g., Rostek and Yoon (2021)). Our analysis abstracts

from risk sharing and cross-exchange interaction to restrict attention to competition among

strategic traders. Also, it assumes common per-unit value and common prior and information

across strategic traders. Even with these conventional assumptions, our analysis highlights

the role of state-wise variation of market size as a possible factor driving a complex relation

among market size, trading volume and price informativeness, as detailed in Subsection 5.2.

Such uncertainty of market size might be practically relevant in the context of market frag-

mentation, given the opaqueness of decentralized exchanges. Relatedly, as discussed in Section

6, the analysis provides implications concerning transparency on market size, which can be

regarded as an element of exchange design. From a broad perspective, it is of interest that

our model with “heterogeneity” across states can alternatively explain non-obvious outcomes

which seemingly require heterogeneity across agents, given the analytical challenge of models

with such agent-wise heterogeneity (e.g., Lambert et al. (2018), Kacperczyk et al. (2024)).

A line of previous studies examined the impact of transparency in financial markets. Gao

and Liang (2013) investigated this question with a strategic-trading framework based on Kyle

(1985) like ours, focusing on the side of transparency increasing asset-payoff-relevant informa-

tion and shedding light on its potentially mixed impact on firm value via market liquidity and

private information acquisition. Moreover, many other previous studies extended the standard

REE model to highlight the possibility that such transparency has unintended consequences of

reducing price informativeness via distorting information choices (e.g., Banerjee et al. (2018),

Edmans et al. (2016)) and promoting noise-creating trades (e.g., Han et al. (2016)).4 While

they all focused on the side of transparency on asset-payoff-relevant information, this paper

alternatively focuses on the side of transparency on market conditions (i.e., aggregate partici-

pation), showing its possibly negative effect on price informativeness. This side of transparency

is also distinguished from learning about what others know, which has been addressed broadly

(e.g., Morris and Shin (2002), Gao (2008)).

The presence of uncertainty over broadly defined market conditions is not uncommon in the

4See Kurlat and Veldkamp (2015) for a similar argument focusing more on the investor welfare.
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literature. Building on Kyle (1985)’s framework of strategic trading like ours, Chakraborty and

Yılmaz (2004) and Goldstein and Guembel (2008) analyzed markets with uncertainty over the

presence and informedness of a single strategic trader, respectively. Their analyses generally

shed light on the possibility of manipulation by the strategic trader, potentially reducing price

informativeness. Also, Cipriani and Guarino (2008) and Park and Sabourian (2011) built

on the framework of Glosten and Milgrom (1985), which involves an uncertainty over the

informedness of trading counterparty, to find the possibility of informational cascades, where

informed traders act independently of their own signal so that their private signals cannot be

revealed. Beyond our focus on strategic trading, many previous studies built on REE models to

introduce different types of uncertain market conditions and learning about them, explaining

various equilibrium properties that would not be straightforward in the standard REE model

(e.g., Banerjee and Green (2015), Gao et al. (2013), Papadimitriou (2023), Peress and Schmidt

(2024)). Compared with the above studies on insider manipulation, informational cascades, and

Gao et al. (2013)’s equilibrium multiplicity in a similar spirit, our analysis with market-depth

uncertainty is relatively optimistic about the stability of markets, providing the existence and

uniqueness of equilibrium outcome. Indeed, the two economic forces behind our main results (in

Section 4) via asymmetric price impacts and participation-conditional probabilities of states do

not arise in those existing frameworks.5 Nevertheless, our finding on a possible decrease of price

informativeness following market expansion (Subsection 5.2), which occurs with a contemporary

increase in trading volume, is reminiscent of the aforementioned price-crash-like outcomes in

the literature.

2 Model

There is a market to trade a security. The security has an asset value θ ∈ R, which is drawn

from a normal distribution N (θ0, σ
2
0).

5For example, the aforementioned REE models rule out the state dependence of (individual) price impacts,

and they assume that market participants hold an exogenous prior distribution on the proportion of informed

traders rather than calculating their participation-conditional probabilities according to the Bayes’ rule. Also,

the framework of Glosten and Milgrom (1985) rules out strategic interaction across informed traders, which is

essential in the former economic force.
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The market consists of LS ≥ 2 strategic traders, LN ≥ 1 noise traders, and a competitive

market-maker. The state of nature a ∈ {0, 1} influences the participation of strategic and

noise traders in the market. Specifically, if a = 0, one strategic trader and one noise trader

are picked uniformly and randomly from the pool of LS strategic traders and that of LN noise

traders, respectively, to participate in the market. If a = 1, all LS strategic traders and LN

noise traders participate in the market. Denote by q ∈ (0, 1) the prior probability that a = 1.

The participation of each individual strategic trader i is denoted by ai ∈ {0, 1}, where ai = 1

represents the participation of the trader, and ai = 0 otherwise: If a = 1, then ai = 1 for every

strategic trader i. If a = 0, then ai = 1 for only one randomly chosen strategic trader i, and

ai = 0 for other strategic traders.

Strategic traders and noise traders who participate in the market submit market orders and

the price is set by the market-maker. Each strategic trader i observes the asset value θ and

submits an order to maximize his trading profit. By contrast, noise traders submit a common

random order ω, which is drawn from normal distribution N (0, σ2
ω). The distribution of the

asset value θ, the noise order ω, and the state of nature a are jointly independent.

For the sake of notational convenience, define MS = 1+a (LS − 1) and MN = 1+a (LN − 1)

as the number of participating strategic traders and noise traders conditional on a ∈ {0, 1},

respectively. Also, denote by Ii the information set of strategic trader i detailed below. The

timing is as follows: First, nature independently draws the asset value θ, the noise order ω,

and the state of nature a. If a = 0, then ai = 1 for only one randomly picked strategic trader,

and ai = 0 for others. If a = 1, then ai = 1 for all strategic traders. Each strategic trader

observes his information set Ii and noise traders observe ω. Second, conditional on ai = 1,

each (participating) strategic trader i submits a market order xi ∈ R and each (participating)

noise trader submits the order ω ∈ R. Then, the market-maker observes the aggregate demand

y =
∑LS

i=1 xi+MNω and sets a price p. After the trade is made, the true asset value θ is realized

and each strategic trader obtains a profit of πi(θ, xi, p) = xi(θ − p).

While the market-maker knows the state of nature a, we consider the following two cases

regarding strategic traders’ knowledge on it:

1. Benchmark case: Each strategic trader knows the asset value θ and the state of nature

a ∈ {0, 1}. Including his own participation ai, the information set is Ii = {θ, a, ai}.

12
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2. Main case: Each strategic trader i knows θ but does not know the state of nature a ∈

{0, 1}. Including his own participation ai, the information set is Ii = {θ, ai}. Accordingly,

he infers the state a conditional on ai = 1, i.e.,

Pr(a = 1|Ii) =
(LS − 1)q

(LS − 1)q + 1

LS

LS − 1
. (1)

The posterior probability is always higher than the prior q = Pr(a = 1) and is increasing

toward one as LS increases toward infinity. These properties arise from “uniformly random

picking”, which implies that each strategic trader is less likely to be picked as the only

one participating at the low-liquidity state a = 0 as the pool of traders is larger.

A demand function for strategic trader i is a mapping Xi from own participation ai and

information sets Ii to orders Xi(ai, Ii). A pricing rule is a mapping P from states and aggregate

demands to prices P (a, y).

Definition 1. An equilibrium is ((X∗
i )

LS
i=1, P

∗) that satisfies the following conditions:

(i) For every i such that ai = 0, X∗
i (0, Ii) = 0.

(ii) For every i such that ai = 1,

X∗
i (1, Ii) = argmax

xi

[xi(θ − E[P ∗(a, y)|Ii])] ,

where i recognizes y = xi +
∑

j ̸=i X
∗
j (aj, Ij) + MNω, and his information set is Ii =

{θ, a, ai} in the benchmark case, and Ii = {θ, ai} in the main case.

(iii) For each aggregate demand y ∈ R,

P ∗(a, y) = E[θ|a, y],

where the expectation is taken with respect to the distribution of aggregate demand y =∑LS

i=1X
∗
i (ai, Ii) +MNω.

The first two conditions require that only participating strategic traders submit non-zero

orders, and that each of them submits an order to maximize his own profit, taking into account

that the asset value θ is mapped into others’ orders, which translate to the distribution of

the price P ∗(a, y) combined with his own order xi. In the benchmark case, each realization

13
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of a ∈ {0, 1} pins down the numbers of other strategic and noise traders participating in the

market (i.e., MS and MN). Accordingly, for each a, the equilibrium definition in this case is

identical to that in the previous framework of market orders with MS strategic traders and the

corresponding variance of noise trade (e.g., Kyle and Wang (1997), Lambert et al. (2018)).6 In

the main case, each strategic trader i makes an inference on the state of nature a, which would

pin down MS and MN , conditional only on his own participation (i.e., ai = 1). Such inference

influences how the asset value θ is converted into the distribution of the price P ∗(a, y) given

the trader’s own order xi described above.

In the third condition, the market-maker passively sets the competitive price given the

aggregate demand y =
∑LS

i=1X
∗
i (ai, Ii)+MNω, rather than pursuing his own profit or objective.

This assumption of passive market-making could be replaced by an explicit Bertrand auction

among multiple risk-neutral bidders, each of whom observes the aggregate demand y (Kyle

(1985)). At this point, the market-maker knows the number of strategic and noise traders

participating in the market (i.e., a ∈ {0, 1}), which is not recognized by strategic traders who

submit orders.

For the sake of tractability, our analysis restricts attention to linear equilibria defined as

follows:

Definition 2. Equilibrium ((X∗
i )

LS
i=1, P

∗) is linear if, for each i, X∗
i is a linear function of θ

given the trader’s information set Ii conditional on ai = 1, and P ∗ is a linear function of

aggregate demand y given a ∈ {0, 1}.

2.1 Discussion of the assumptions

Among many other alternatives (e.g., Kyle (1989)), the current Kyle (1985)-based trading

mechanism is employed to tractably capture our motivating situation with uncertain market

depth in the short run. Specifically, our model extends a multi-trader variant of Kyle (1985),

whose literature is reviewed in Subsection 1.1, to uncertainties over the numbers of partici-

pating strategic and noise traders. Regarding the latter uncertainty, the model is generally

6While a single noise trader exists in their models, increasing the number of noise traders in the current

model is equivalent to (quadratically) increasing the variance of the single noise trader’s trade in their models

(i.e., setting it to be M2
Nσ2

ω).
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consistent with Hong and Rady (2002), and its assumption of perfectly correlated noise orders

is not critical.7 Regarding the former uncertainty, the model operates in accordance with the

standard (symmetric) Bayesian inference of participating strategic traders, including that on

participation-conditional probabilities of states. As in most of the analyses in the existing

literature, linearity is assumed in agents’ equilibrium behavior (Definition 2).8

The benchmark case of the model is set to highlight our focus of analysis on the effects of

uncertainty over market depth. As noted in Section 2, for a = 0 (a = 1), an equilibrium in

the benchmark case corresponds to that of Kyle (1985) (its multi-trader variant), where the

participation of traders is publicly known and pins down the market depth. By contrast, an

equilibrium in the main case involves agents’ behaviors in response to the aforementioned un-

certainties over their participation. The difference of agents’ behaviors between the benchmark

case and the main case drives the analysis in Section 4.

The definition of equilibrium (Definition 1) draws on the premise that the market-maker has

superior information about the numbers of participating strategic and noise traders (i.e., a ∈

{0, 1}) compared with strategic traders. This premise can be justified by empirical evidence on

the behavior of market-makers responsive to market conditions (e.g., Anand and Venkataraman

(2016)). Indeed, many of these market-makers are associated with investment banks, who have

own research arms, and these affiliated market-makers appear to benefit from research coverage

(e.g., Madureira and Underwood (2008)). Also, they might particularly benefit from such

information on (short-term) market conditions as they are distinguished from typical traders

in terms of trading frequency.

The assumption of strategic traders exogenously and perfectly knowing the asset value

provides the clearest case of adverse selection between strategic traders and the market-maker.9

As formally verified in Section 7, the main economic forces driving our main results in Section

7The number of participating noise traders in our model is captured by their state-dependent total variance

considered in Hong and Rady (2002) without loss of generality. At this point, it is straightforward to see that

our main results in Sections 4 and 5 continue to hold for the alternative case of L̂N noise traders submitting

independent orders by simply substituting L̂N for L2
N .

8See McLennan et al. (2017) for the uniqueness of such linear equilibrium in a broader class of equilibria

focusing on the case of single strategic trader.
9Such adverse selection is indeed essential in the first economic force via asymmetric price impacts across

states throughout Section 4.
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4 generally persist even with noisy information on the asset value. Also, the possibility of

endogenous information acquisition is discussed in Section 7.

The form of randomness in the numbers of participating strategic and noise traders given

by MS and MN , respectively, is stylized in the current model for the sake of simplicity. The

positive state-wise correlation between the numbers of participating strategic and noise traders

is driven by our initial motivation concerning the (state-wise) variation of market depth. Also,

there is no loss of generality regarding the number of participating noise traders except for

being binary.10 Still, the model imposes a restriction on the number of participating strategic

traders MS in that it can be either one or LS. One possible interpretation is that strategic

traders do not distinguish whether their own attentiveness is “private” (i.e., the trader is aware

of the relevance of that news alone) and “public” (i.e., all traders are aware).11 In addition, as

seen in Section 4 and more generally discussed in Section 7, the core intuition behind our main

results does not critically depend on the restriction that MS = 1 in state 0.

3 Equilibrium characterization

In this section, we establish the existence of a unique equilibrium of the game in the benchmark

case and the main case.

For each state a ∈ {0, 1}, an equilibrium is determined by the following “guess and check”

procedures: First, we conjecture that each participating strategic trader i’s order is Xi(1, Ii) =

β(θ − θ0), where β ∈ R+. Then the market-maker sets the price

P (y) = E [θ|a, y] = θ0 + λy,

where λ is given by the Projection Theorem for normal random variables as follows:

λ =
1

MSβ

σ2
0

σ2
0 +

M2
Nσ2

ω

M2
Sβ

2

. (2)

10Specifically, the situation where LN (LN ) noise traders participate in state 0 (1) is equivalent to the model

where LN = LN/LN and each noise trader’s variance is multiplied by L2
N .

11This type of dichotomy between private and public news is broadly used as a simplifying assumption in the

theoretical literature (e.g., Morris and Shin (2002)).
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The equilibrium value of λ is often called Kyle’s lambda (Kyle (1985)) and represents the

degree of illiquidity. Second, each strategic trader i correctly recognizes the equilibrium price

as a function of his order xi, others’ orders x−i :=
∑

j∈{1,··· ,LS}\{i} xj and the noise order MNω,

i.e., Pi : R3 → R such that

Pi (xi, θ,MNω) = θ0 + λ [xi + (MS − 1)β(θ − θ0) +MNω] , (3)

combined with the fact that x−i = (MS−1)β(θ−θ0) since xj = β(θ−θ0) for each participating

strategic trader j ̸= i by the initial conjecture. Given ai = 1 and θ, he chooses the order

xi = Xi(1, Ii) so as to maximize his expected profit

E [xi (θ − Pi(xi, θ,MNω)) |Ii] ,

where Pi is obtained from Equation (3). Noting that the expected profit is hump-shaped with

respect to xi, its first-order condition is

dE [xi (θ − Pi(xi, θ,MNω)) |Ii]

dxi

= E[θ − Pi(xi, θ,MNω)|Ii]− E[λ|Ii]xi

= θ − θ0 − E[λ(MS − 1)|Ii]β(θ − θ0)− 2E[λ|Ii]xi = 0, (4)

where λ is given by Equation (2). The first term E[λ(MS −1)|Ii] represents trader i’s inference

about the covariance between the price and the asset value θ given conjectured trading coef-

ficient β. Other things being equal, it negatively influences his trading incentive. The second

term E[λ|Ii] represents trader i’s inference about the price impact, which negatively influences

his trading incentive as well.

3.1 Equilibrium in the benchmark case

In the benchmark case, each strategic trader knows the realized state a, which pins down the

numbers of participating strategic and noise traders (i.e., MS and MN , respectively) and thus

λ through Equation (2). Consequently, they correctly recognize the true values of expectation

terms in Equation (4), i.e., E[λ(MS − 1)|Ii] = λ(MS − 1) and E[λ|Ii] = λ. Then Equation (4)

is solved to obtain the trader’s optimal order and then check whether it is consistent with the

initial conjecture β, leading to the following proposition:
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Proposition 1. In the benchmark case, there exists a unique linear equilibrium. In the unique

linear equilibrium,

(i) Kyle’s lambda is λ∗
b =

√
MS

MS+1
1

MN

√
σ2
0

σ2
ω
, and it is lower at a = 1 compared with a = 0 for

every LS ≥ 2 and LN ≥ 1.

(ii) Strategic traders’ orders take the form of X∗
i (0, Ii) = 0 and X∗

i (1, Ii) = β∗
b (θ− θ0), where

β∗
b =

√
M2

Nσ
2
ω

MSσ2
0

=

√
(1 + a(LN − 1))2σ2

ω

(1 + a(LS − 1))σ2
0

.

In particular, β∗
b is lower (higher) at a = 1 compared with a = 0 if LS > L2

N (LS < L2
N).

As the state of nature moves from a = 0 to a = 1, strategic traders face smaller market

power or, equivalently, higher market depth measured by Kyle’s lambda. The increase in market

depth is attributed to both increases in the number of participating strategic traders MS and

that of participating noise traders MN . This is consistent with Kyle (1985)’s notion of market

depth, which is proportional to noise trade and inversely proportional to the amount of private

information not incorporated in the price. Intuitively, an increase in MN alleviates adverse

selection given the information gap between strategic traders and the market-maker. Also, an

increase in MS reduces their information gap by making the price more informative, thereby

reducing adverse selection given noise trade.

On the other hand, as the state of nature moves from a = 0 to a = 1, each strategic trader’s

aggressiveness β∗
b changes via two possibly opposing effects. First, as seen above, strategic

traders face higher market depth and thus choose to trade more aggressively other things being

equal. Second, they face smaller trading opportunities in equilibrium unless LN is particularly

large compared with LS.
12 The comparison between these effects determines whether each

strategic trader’s aggressiveness β∗
b is lower or higher at a = 1 compared with a = 0. Specifically,

if higher liquidity at a = 1 is mainly driven by informed trading (i.e., LS > L2
N), the second

effect of smaller trading opportunities is dominant so that trading aggressiveness β∗
b is lower

at a = 1. On the other hand, if it is mainly driven by noise trading (i.e., LS < L2
N), the first

effect of higher market depth is dominant so that trading aggressiveness β∗
b is higher at a = 1.

12Formally, each strategic trader’s equilibrium profit is E[π∗
b ] = E[β∗

b (θ − θ0)(θ − p)] = MN

(MS+1)
√
MS

√
σ2
0σ

2
ω,

which is lower at a = 1 compared with a = 0 if and only if LN < 1
2 (LS + 1)

√
LS .
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3.2 Equilibrium in the main case

In the main case, the two expectation terms E[λ(MS − 1)|Ii] and E[λ|Ii] in Equation (4) no

longer equal their respective true values due to the lack of information about a. Instead, they

are participation-conditional-probability-weighted average of the involved variables, where the

posterior probability is given by (1). These expectation terms pin down state-invariant trading

aggressiveness β∗
m as shown by the following proposition:

Proposition 2. In the main case, there exists a unique linear equilibrium. In the unique linear

equilibrium, strategic traders’ orders take the form of X∗
i (0, Ii) = 0 and X∗

i (1, Ii) = β∗
m(θ− θ0),

where β∗
m is determined by

σ2
ω

σ2
0(β

∗
m)

2
=

L2
S

2L2
N


L2
N

L2
S
(1− q − LSq) + 2q − 1

(LS − 1)q + 1
+

√√√√√
 L2

N

L2
S
(1− q − LSq) + 2q − 1

(LS − 1)q + 1

2

+
4
L2
N

L2
S

(LS − 1)q + 1

 .

Their individual aggressiveness β∗
m is compared with that in the benchmark case as follows:

(i) When liquidity is driven by informed trading (i.e., LS > L2
N), β

∗
b |a=1 < β∗

m < β∗
b |a=0.

(ii) When liquidity is driven by noise trading (i.e., LS < L2
N), β

∗
b |a=0 < β∗

m < β∗
b |a=1.

The second part of Proposition 2 presents the relation between β∗
m with β∗

b for a ∈ {0, 1}.

Regardless of whether LS > L2
N or LS < L2

N , each trader’s main-case aggressiveness is in the

middle of those in the benchmark case conditional on two possible states. This property natu-

rally follows from the fact that each trader maximizes a participation-conditional-probability-

weighted average of profits for the two states 0 and 1, both of which have their own maximum

at β∗
b |a=0 and β∗

b |a=1, respectively. Only under the knife-edge condition LS = L2
N , the optimal

aggressiveness of each trader in the benchmark case is the same across the two states, so it

holds β∗
m = β∗

b |a=1 = β∗
b |a=0.

As a precursor to the main analysis in Section 4, we consider three different scenarios of

large number of strategic investors (i.e., large LS):

Scenario 1. High liquidity driven by informed trading: LS → ∞ and LN is fixed;

Scenario 2. High liquidity driven by noise trading: LS → ∞ and
L2
N

LS
→ ∞;
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Scenario 3. “Middle” scenario: LS → ∞ and
L2
N

LS
→ ρ for some ρ ∈ (0,∞).

The following lemma shows that a closed-form representation of equilibrium is feasible for each

of these large-market scenarios.

Lemma 1. The following statements hold in the three scenarios of large markets:

(i) In the first large-market scenario, β∗
m →

√
σ2
ω(1−2q)

σ2
0

if q < 1
2
, and

√
LSβ

∗
m → LN

√
q

2q−1
σ2
ω

σ2
0

if q > 1
2
.

(ii) In the second large-market scenario,
√
LS

LN
β∗
m →

√
σ2
ωq

σ2
0
.

(iii) In the third large-market scenario, β∗
m →

√
σ2
ω

σ2
0

[
−(ρ−2)q−1+

√
((ρ−2)q+1)2+4ρq
2ρq

] .

To get the intuition behind the lemma, we first note that each strategic trader’s aggres-

siveness β∗
m in the main case maximizes the probability-weighted sum of profits conditional on

a = 0 and a = 1, whose weight is given by Equation (1). Likewise, its first-order condition can

be represented as the probability-weighted sum of first-order derivatives of profits conditional

on a = 0 and a = 1. Formally, given conjectured coefficient of other traders β, Equation (4) is

equivalent to

Pr(a = 1|Ii)

θ − θ0 − λ|a=1(LS − 1)β(θ − θ0)︸ ︷︷ ︸
Trading opportunities at a=1

− 2λ|a=1︸ ︷︷ ︸
Market power at a=1

xi


+(1− Pr(a = 1|Ii))

 θ − θ0︸ ︷︷ ︸
Trading opportunities at a=0

− 2λ|a=0︸ ︷︷ ︸
Market power at a=0

xi

 = 0,

where Pr(a = 1|Ii) is given by Equation (1) and λ|a=0 and λ|a=1 represent the (β-conditional)

slopes of the pricing rule given by Equation (2) conditional on a = 0 and a = 1, respectively.13

Which state of nature a ∈ {0, 1} is dominant over the other in determining his main-case

trading aggressiveness β∗
m? Two opposing effects are present in each of the three scenarios of

large markets. First, his marginal incentive to trade is flatter with respect to xi conditional on

13As seen by the fact that Equation (2) is common to the benchmark case and the main case, these slopes

are not different from the corresponding ones in the benchmark case, given that they are chosen by the market-

maker, who knows the realized state, given β.
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a = 1 compared with that conditional on a = 0. The difference of these slopes stems from the

fact that negligible price impact leads to smaller profit loss from deviating from the optimal

aggressiveness conditional on a = 1 compared with that conditional on a = 0. As a result, his

aggressiveness β∗
m is tilted toward the optimal aggressiveness conditional on a = 0. Second,

each strategic trader puts a negligible probability weight on a = 0 via the Bayesian inference

conditional on his participation as noted in Section 2. This effect tilts his trading aggressiveness

toward that conditional on a = 1.

In the first large-market scenario, his main-case trading aggressiveness β∗
m is predominantly

driven by the first (second) effect if q < 1
2
(q > 1

2
). Intuitively, as the prior probability q is lower

so that the true state is more likely to be a = 0, the first effect, which pushes β∗
m toward the

optimal aggressiveness conditional on a = 0 given the posterior probability Pr(a = 1|Ii) ∈ (0, 1),

tends to be stronger. At the same time, the second effect, which pushes β∗
m toward the optimal

aggressiveness conditional on a = 1 (i.e., zero by Proposition 1) via an increase in the posterior

probability Pr(a = 1|Ii) ∈ (0, 1), tends to be weaker. The discontinuity at q = 1
2
arises from the

fact that these two opposite effects grow together in the limit of large LS, eventually resulting

in one effect dominating the other.

In the second large-market scenario, his main-case trading aggressiveness β∗
m is predom-

inantly driven by the second effect provided that q > 0. In contrast to the corresponding

(second) effect in the first large-market scenario, which decreases β∗
m toward zero, the second

effect in this scenario increases β∗
m toward infinity as the optimal aggressiveness conditional

on a = 1 goes to infinity.14 Such diverging effect is likely to be stronger compared with the

corresponding (second) effect in the first large-market scenario. On the other hand, the first

effect from the difference of slopes across states is not particularly stronger in this scenario

compared with the corresponding (first) effect in the first large-market scenario.15

In the third large-market scenario, the two effects balance each other in that β∗
m converges

toward a positive number. Such balance occurs as both effects send β∗
m toward positive numbers

14It follows from Proposition 1 and L2
N/LS → ∞ in this scenario.

15Specifically, in Equation (4), λ|a=1 and λ|a=0 as functions of β do not differ between the first and second

large-market scenarios, as easily seen by Equation (2). Intuitively, given conjectured trading coefficient β, the

former goes to zero due to large informed trading in both scenarios, whereas the latter does not differ between

the two scenarios given the fixed numbers of participating strategic and noise traders (i.e., one for each type).
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rather than sending it toward zero or diverging. As expected, the ratio of balance between the

two effects in determining β∗
m hinges on ρ (= L2

N/LS) as well as q. As implied by Proposition

2, β∗
m is between β∗

b |a=0 =
√

σ2
ω

σ2
0
and β∗

b |a=1 =
√

ρσ2
ω

σ2
0
.16

Remark. The two opposing effects described above are not specific to the three scenarios

of large markets. Rather, they are present in deviating the main-case trading aggressiveness

β∗
m from the prior-weighted average of the benchmark-case trading aggressiveness β∗

b for every

LS ≥ 2 and LN ≥ 1.17 The relative strength between these effects is determined by LS and LN

in line with the three large-market scenarios presented above. As is clear in Section 4, these

effects are also useful to explain changes in expected trading volume and price informativeness

in response to a change from the benchmark case to the main case.

4 Trading volume and price informativeness

In this section, we compare expected trading volume and price informativeness across the

benchmark case and the main case. Throughout the section, we restrict attention to the case

where state a is relevant for each trader’s aggressiveness (i.e., LS > L2
N or LS < L2

N). Otherwise

(i.e., LS = L2
N), trading volume and price informativeness would not differ across the benchmark

case and the main case.

4.1 Effect of market-depth uncertainty on expected trading volume

Given that trading volume is readily observable, an analysis of expected trading volume, which

refers to the prior-weighted expectation of trading volume as formally defined below, provides

testable implications.

Definition 3. Expected trading volume is defined as the sum of the expected absolute values of

strategic and noise traders’ equilibrium orders as follows:

TV =

LS∑
i=1

E[|X∗
i (ai, Ii)|] + E[MN |ω|],

16It follows from Proposition 1 and L2
N/LS → ρ in this scenario.

17The first effect persists because λ|a=0 > λ|a=1 holds generically. Likewise, the second effect persists because

the posterior probability Pr(a = 1|Ii) is generally higher than the prior q = Pr(a = 1).
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where the expectation is taken with respect to the state a ∈ {0, 1}, the asset value θ, and the

noise order ω. Denote by TVb and TVm the expected trading volume for the benchmark case

and the main case, respectively.

In general, expected trading volume can be decomposed into the (expected) volume of

informed trading and that of noise trading, given the independence between the asset value θ

and the noise order ω:18

TV = E[MSβ
∗]

√
2

π
σ2
0︸ ︷︷ ︸

Informed trading

+E[MN ]

√
2

π
σ2
ω︸ ︷︷ ︸

Noise trading

, (5)

where β∗ = β∗
b for the benchmark case, and β∗ = β∗

m for the main case.

In the benchmark case, we apply Equation (5) for β∗ = β∗
b and Proposition 1 to obtain

TVb =

√
2

π
σ2
ω

E[MN

√
MS]︸ ︷︷ ︸

Informed trading

+ E[MN ]︸ ︷︷ ︸
Noise trading

 , (6)

which is consistent with Proposition 1 in light of its inverse relation with Kyle’s lambda λ∗.

As we move from the benchmark case to the main case, each strategic trader’s aggressiveness

changes from β∗
b to β∗

m for each state a ∈ {0, 1} so that the volume of informed trading in

Equation (5) changes from Equation (6) to

TVm = E[MS]β
∗
m

√
2

π
σ2
0︸ ︷︷ ︸

Informed trading

+E[MN ]

√
2

π
σ2
ω︸ ︷︷ ︸

Noise trading

. (7)

More specifically, strategic traders respond to the absence of information about state a depend-

ing on LS and LN and their aggregate trading volume changes accordingly as follows:

1. When liquidity is driven by informed trading (i.e., LS > L2
N), strategic traders are opti-

mally more (less) aggressive in the main case compared with the benchmark case condi-

tional on the state of high liquidity a = 1 (low liquidity a = 0). Formally, Proposition

2 implies β∗
m > β∗

b (β∗
m < β∗

b ) conditional on a = 1 (a = 0). As a result, conditional

on a = 1 (a = 0), trading volume is higher (lower) in the main case compared with the

benchmark case.

18The following equation immediately follows from Definition 3 together with the fact that the expectation

of |X| is equal to
√

2
πσ

2
X for normal random variable X with mean zero and variance σ2

X .
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2. When liquidity is driven by noise trading (i.e., LS < L2
N), strategic traders are optimally

less (more) aggressive in the main case compared with the benchmark case conditional

on the state of high liquidity a = 1 (low liquidity a = 0). Formally, Proposition 2 implies

β∗
m < β∗

b (β∗
m > β∗

b ) conditional on a = 1 (a = 0). As a result, conditional on a = 1

(a = 0), trading volume is lower (higher) in the main case compared with the benchmark

case.

Whether liquidity is driven by informed or noise trading comes down to the comparison

between the change of expected trading volume conditional on a = 0 and that conditional on

a = 1. The following proposition shows that the change conditional on a = 1 is unambiguously

dominant in determining the sign of change in expected trading volume.

Proposition 3. For every LS ≥ 4 and LN ≥ 4, the following statements hold:

(i) When liquidity is driven by informed trading (i.e., LS > L2
N), expected trading volume in

the main case is higher than that in the benchmark case.

(ii) When liquidity is driven by noise trading (i.e., LS < L2
N), expected trading volume in the

main case is lower than that in the benchmark case.

The sign of change in expected trading volume (i.e., TVm−TVb) is pinned down by whether

liquidity is driven by informed trading (LS > L2
N) or noise trading (LS < L2

N). While the

proposition holds for LS ≥ 4 and LN ≥ 4, our simulations show that the robustness results in

Proposition 3 also hold when 2 ≤ LS ≤ 3 and/or 1 ≤ LN ≤ 3.19

In order to see the intuition in detail, note first that trading volume in equilibrium is

determined so as to ensure that each trader has no incentive to be further aggressive. Formally,

conjecturing that every trader’s aggressiveness is β, applying Equation (2) to Equation (4)

yields 1− E

 σ2
0

σ2
0 +

M2
Nσ2

ω

ν2a

MS + 1

MS

∣∣∣∣∣Ii

 (θ − θ0) = 0, (8)

19Specifically, the proof of the proposition defines a polynomial g as a function of q where TVm > TVb if

and only if g(q) > 0, regardless of other parameters in the model. For 2 ≤ LS ≤ 3 and/or 1 ≤ LN ≤ 3, the

simulations show g(q) > 0 for all numerical values of q ∈ [0, 1] considered.
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where the expectation is taken over a ∈ {0, 1} and νa := MSβ. As seen in Equation (5), the

difference in trading volumes between the main case and the benchmark case comes from that

in νa for each a ∈ {0, 1}. Denote by Ia = Ia(νa) the left-hand side of Equation (8) conditional

on each a normalized over θ − θ0, i.e.,

Ia(νa) := 1− σ2
0

σ2
0 +

M2
Nσ2

ω

ν2a

MS + 1

MS

,

where MS = 1 + a(LS − 1) and MN = 1 + a(LN − 1). It is intuitive that Ia(νa) is decreasing

in νa for each a because more informed trading leads to more informative price, which means

less trading opportunity for each trader despite lower market power. In the benchmark case,

the expectation in Equation (8) is equal to the true value, implying that νa is determined for

each a, i.e., I0(ν0) = I1(ν1) = 0. In the main case, Equation (8) can be written as

Pr(a = 1|Ii)I1(ν1) + Pr(a = 0|Ii)I0(ν0) = 0,

which pins down ν1 = LSβ
∗
m and ν0 = β∗

m so that ν1 = LSν0 since β∗
m is invariant to the state.

When liquidity is driven by informed trading (i.e., LS > L2
N), ν1 increases and ν0 decreases

as we move from the benchmark case to the main case.20 The former increase in ν1 (latter

decrease in ν0) is equivalent to the increase (decrease) in trading volume conditional on a = 1

(a = 0) described above. The proposition tells us that, as we move from the benchmark case

to the main case, E[νa] increases due to the dominance of the increase in ν1. Here, there are

two opposing economic forces at work: (i) I1 is decreasing in ν1 with a flatter slope than I0

does so in ν0 due to lower price impact at a = 1 compared with a = 0. This implies that, if

the probability weights were prior ones (i.e., Pr(a = 1|Ii) = q), the (prior-weighted) average

E[νa] would be higher in the main case compared with that in the benchmark case.21 This

effect moves the change in E[νa] in the positive direction in response to a change from the

benchmark case to the main case. In the limit of large LS, it coincides with the first effect from

20Proposition 1 implies ν1/LS < ν0 in the benchmark case since the left-hand side is β∗
b |a=1, whereas the

right-hand side is β∗
b |a=0. Accordingly, ν1 must increase and ν0 must decrease so that I1(ν1) < 0 and I0(ν0) > 0

in the main case, where ν1/LS = ν0 must hold.
21Graphically, as we move from the benchmark case to the main case, ν1 (ν0) increases (decreases) along I1

(I0) to make a balance between I1(ν1) < 0 and I0(ν0) > 0 so that qI1(ν1) + (1 − q)I0(ν0) = 0. At this point,

the flatter (steeper) slope of I1 (I0) means that ν1 (ν0) must increase further (decrease less).
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asymmetric slopes of the marginal incentive of each trader described in the intuition behind

Lemma 1. (ii) As the probability weights are actually tilted toward a = 1 compared with prior

ones (i.e., Pr(a = 1|Ii) > q), the decrease in ν0 is larger and the increase in ν1 is smaller. This

effect moves the change in E[νa] in the negative direction in response to a change from the

benchmark case to the main case. In the limit of large LS, it coincides with the second effect

from participation-conditional probabilities of states described in the intuition behind Lemma

1. According to the proposition, the first force (i) is dominant, leading to the dominance of

increase in trading volume at a = 1.

When liquidity is driven by noise trading (i.e., LS < L2
N), ν1 decreases and ν0 increases as

we move from the benchmark case to the main case.22 The former decrease in ν1 (latter increase

in ν0) is equivalent to the decrease (increase) in trading volume conditional on a = 1 (a = 0)

described above. As in the above case of liquidity driven by informed trading, the proposition

indicates that, as we move from the benchmark case to the main case, E[νa] decreases due to

the dominance of the decrease in ν1, which stems from the dominance of the first economic

force from asymmetric price impacts.

The dominance of change in trading volume conditional on a = 1 (i.e., ν1) can be understood

more intuitively as follows. We think of each trader who faces an uncertainty over the realized

state a. If he knew it, his optimal aggressiveness would be dependent on whether a = 1 or

a = 0. Given its uncertainty, the trader chooses his aggressiveness by balancing his expected

profits conditional on two possible states. There are two lines of conflicting thought concerning

the relative weight across states. On the one hand, he is aware that he would lose relatively less

(more) by choosing his aggressiveness away from the optimal one at a = 1 (a = 0) due to lower

(higher) price impact. This line of thought tilts his trading aggressiveness toward the optimal

one conditional on a = 0. On the other hand, being Bayesian-rational, he is also aware that

he is more likely to be in the market as one of many traders than to be the only one. Hence,

the other line of thought goes in the way that his trading aggressiveness is tilted toward the

optimal one conditional on a = 1. However, the former line of thought is still “dominant” in

the sense that he tends to tilt his trading aggressiveness toward the optimal one conditional

22Proposition 1 symmetrically implies ν1/LS > ν0 in the benchmark case. Accordingly, ν1 must decrease and

ν0 must increase so that I1(ν1) > 0 and I0(ν0) < 0 in the main case, where ν1/LS = ν0 must hold.

26



Lou and Park: Strategic trading with uncertain market depth

on a = 0, thereby disproportionately changing his trading aggressiveness conditional on a = 1

by trading more aggressively (less aggressively) when liquidity is driven by informed trading

(noise trading). The unambiguous dominance of the former economic force, which drives the

dominance of change in trading volume conditional on a = 1, is contrasted with the mixed

direction of dominance in determining each individual trader’s trading aggressiveness in Lemma

1. This can be understood by noting (i) the former economic force predominantly influencing

each trader’s aggressiveness conditional on a = 1 and (ii) each trader’s aggressiveness at a = 1

being disproportionally weighted in (total) trading volume compared with that at a = 0 as seen

in Equation (5).

4.2 Effect of market-depth uncertainty on expected price informa-

tiveness

Price informativeness measures the quality of information contained in the equilibrium price.

Drawing on the idea that firm investment is an option on information and firm value embeds the

value of this option, we follow Bai et al. (2016) to define price informativeness formally. It can

be regarded as a part of aggregate welfare, reflecting shareholders’ benefit from the information

in the price. While it is alternatively defined in many previous studies (e.g., Lou and Rahi

(2023), Rostek and Weretka (2012)) as the (normalized) conditional variance of the asset value,

their definition is ordinally equivalent to ours.23 Moreover, this welfare-based approach enables

us to further interpret its expectation over states as part of expected aggregate welfare, which

is a standard welfare criterion under uncertainty.

Definition 4. For given state a ∈ {0, 1}, price informativeness is defined as the variance of

conditional expectation of the asset value from the viewpoint of agents observing the equilibrium

price p and the state a:

PI = Var (E[θ|p, a]|a) ,
23It follows from the law of total variance that Var(E[θ|p, a]) = Var(θ)−E(Var[θ|p, a]) = Var(θ)−Var[θ|p, a],

where the second equality holds because the conditional variance is constant due to the normality of random

variables. This implies that our definition based on the variance of conditional expectation is one-to-one mapped

with their definition based on the conditional variance of the asset value.
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where the variance is taken with respect to the asset value θ and the noise order ω. In addition,

expected price informativeness E[PI] is the prior-weighted average of price informativeness

over states a ∈ {0, 1}. Denote by E[PIb] and E[PIm] the expected price informativeness in the

benchmark case and the main case, respectively.

The above definition of expected price informativeness slightly extends the corresponding

definition in Bai et al. (2016) to the situation where price informativeness may vary across

a ∈ {0, 1} in the current model. In particular, we first define PI conditional on each state a,

which coincides with Bai et al. (2016)’s definition of price informativeness with outside agents

looking at the price knowing the realized state a. Then we take its state-wise average E[PI] to

represent their expected aggregate welfare, which can be viewed as a measure of real efficiency

from the informational role of financial prices.

Given our welfare-based definition of price informativeness, it is bounded by a finite value

at which the price fully aggregates all private information held by strategic traders without any

error. This concept of full information aggregation coincides with the definition of “privately

revealing” equilibrium price termed in Rostek and Weretka (2012).

To get price informativeness in each state a ∈ {0, 1}, we first note that the equilibrium price

is informationally equivalent to the aggregate demand y. Thus, we have

PI = Var(E[θ|p, a]|a) = Var(E[θ|y, a]|a) = Var

(
θ0 + λ∗

(
LS∑
i=1

X∗
i (ai, Ii) +MNω

))
,

where λ∗ is the value of λ given by Equation (2) in equilibrium (i.e., at β = β∗). Using Equation

(2) and X∗
i (ai, Ii) = β∗(θ − θ0), price informativeness conditional on each state a is given by

PI =
(σ2

0)
2

σ2
0 +

M2
Nσ2

ω

M2
S(β

∗)2

. (9)

It inversely reflects the ratio of volume between noise trading (i.e., M2
Nσ

2
ω) and informed trad-

ing (i.e., M2
S(β

∗)2), which represents the relative size of noise of aggregate demand from the

viewpoint of the market-maker.

In the benchmark case, we apply Proposition 1 to Equation (9) for β∗ = β∗
b to obtain

PIb =
MS

MS + 1
σ2
0. (10)
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It is easy to see that PIb is increasing in the number of participating strategic tradersMS toward

its level at which the price fully aggregates all private information held by strategic traders, and

it does not change as the number of participating noise traders MN increases. Intuitively, the

former follows from the observation that the proportion of informed trading relative to noise

trading is increasing in the number of participating strategic traders and eventually becomes

dominant, as seen in Equation (5) in the previous subsection. Also, the latter arises from the

fact that strategic traders trade more aggressively in response to an increase in the number of

participating noise traders due to enhanced liquidity, thereby fully offsetting the decrease of PIb

directly resulting from increased noise trading. Accordingly, expected price informativeness is

its prior-weighted average over states a ∈ {0, 1}:

E[PIb] =

(
1

2
· (1− q) +

LS

LS + 1
· q
)
σ2
0. (11)

As we move from the benchmark case to the main case, note first that the (relative) volume

of informed trading changes in Equation (5) because each strategic trader’s aggressiveness

changes from β∗
b to β∗

m for each state a ∈ {0, 1}. In parallel with the corresponding change in

expected trading volume analyzed in the previous subsection, Proposition 2 and Equation (9)

for β∗ = β∗
m imply that price informativeness changes conditional on each state a as follows:

1. When liquidity is driven by informed trading (i.e., LS > L2
N), higher (lower) optimal

aggressiveness of strategic traders leads to higher (lower) price informativeness conditional

on the state of high liquidity a = 1 (low liquidity a = 0).

2. When liquidity is driven by noise trading (i.e., LS < L2
N), lower (higher) optimal aggres-

siveness of strategic traders leads to lower (higher) price informativeness conditional on

the state of high liquidity a = 1 (low liquidity a = 0).

Similarly to expected trading volume analyzed in the previous subsection, the comparison

of expected price informativeness between the benchmark case and main case hinges on the

comparison between the change of price informativeness conditional on a = 0 and that condi-

tional on a = 1. In contrast to the comparison of expected trading volume in Proposition 3, the

following proposition shows that its change conditional on a = 0 is unambiguously dominant

in determining the sign of change in expected price informativeness.
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Proposition 4. For every LS ≥ 2 and LN ≥ 1, the following statements hold:

(i) When liquidity is driven by informed trading (i.e., LS > L2
N), expected price informative-

ness in the main case is lower than that in the benchmark case.

(ii) When liquidity is driven by noise trading (i.e., LS < L2
N), expected price informativeness

in the main case is higher than that in the benchmark case.

The sign of change in expected price informativeness (i.e., E[PIm] − E[PIb]) is symmetric

to that in expected trading volume in Proposition 3, depending on whether liquidity is driven

by informed trading (LS > L2
N) or noise trading (LS < L2

N).

Note first that price informativeness conditional on each state a is determined so as to

ensure that the resulting price is close to the asset value to the extent that each trader has no

incentive to be further aggressive. Formally, conjecturing that every trader’s aggressiveness is

β, we can rewrite each trader’s first-order condition in Equation (8) as follows:(
1− E

[
ζa
σ2
0

MS + 1

MS

∣∣∣∣∣Ii

])
(θ − θ0) = 0,

where ζa denotes price informativeness conditional on state a ∈ {0, 1} given by Equation (9).

Similarly to the analysis of expected trading volume in the previous subsection, we can think

of the left-hand side as a function of ζa for each state a ∈ {0, 1}. Denote by Ja = Ja(ζa) the

left-hand side conditional on each a normalized over θ − θ0, i.e.,

Ja(ζa) := 1− ζa
σ2
0

MS + 1

MS

,

where MS = 1+a(LS−1). It is intuitive that Ja(ζa) is decreasing in ζa for each a because higher

price informativeness means less trading opportunity for each trader. In the benchmark case,

the expectation in the above equation is equal to the true value, implying that ζa is determined

for each a, i.e., Ja(ζa) = 0. In the main case, the expectation is equal to the participation-

conditional-probability-weighted average over states. Thus, each trader’s first-order condition

in the main case can be written as

Pr(a = 1|Ii)J1(ζ1) + Pr(a = 0|Ii)J0(ζ0) = 0,

pinning down β∗
m and thereby ζ0 and ζ1 by Equation (9).
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When liquidity is driven by informed trading (i.e., LS > L2
N), ζ0 decreases (i.e., PIb > PIm

at a = 0) and ζ1 increases (i.e., PIb < PIm at a = 1) as we move from the benchmark case

to the main case. It then follows that J0(ζ0) > 0 and J1(ζ1) < 0 in the main case, where their

participation-conditional-probability-weighted average must be zero. The proposition indicates

that E[ζa] is lower in the main case due to the dominance of the decrease in ζ0, which represents

price informativeness conditional on a = 0. In parallel with the analysis of change in expected

trading volume in Subsection 4.1, there are two opposing economic forces at work: (i) J1 is

decreasing in ζ1 with a flatter slope than J0 does so in ζ0 due to lower price impact at a = 1

compared with a = 0. This effect moves E[ζa] in the positive direction in response to a change

from the benchmark case to the main case. (ii) As the probability weights are actually tilted

toward a = 1 compared with prior ones (i.e., Pr(a = 1|Ii) > q), the decrease in ζ0 becomes

larger and the increase in ζ1 becomes smaller. This effect moves E[ζa] in the negative direction in

response to a change from the benchmark case to the main case. According to the proposition,

the second force (ii) is dominant, leading to the dominance of decrease in price informativeness

at a = 0.

When liquidity is driven by noise trading (i.e., LS < L2
N), ζ0 increases (i.e., PIb < PIm at

a = 0) and ζ1 decreases (i.e., PIb > PIm at a = 1) as we move from the benchmark case to

the main case. It then follows that J0(ζ0) < 0 and J1(ζ1) > 0 in the main case, where their

participation-conditional-probability-weighted average must be zero. As in the above case of

liquidity driven by informed trading, the proposition tells us that E[ζa] increases due to the

dominance of the increase in ζ0, which stems from the dominance of the economic force through

participation-conditional probabilities of states.

The changes in expected trading volume and price informativeness have opposite signs even

though they are subject to the same two economic forces as described above. Their opposite

signs arise from the fact that the (first) economic force from asymmetric price impacts across

states influences expected price informativeness weakly compared with its influence on expected

trading volume. Formally, compared with the corresponding asymmetry of slopes across I0 and

I1 behind the change in expected trading volume in Subsection 4.1, the asymmetry of slopes

across J0 and J1 is less pronounced, relatively weakening the influence of (first) economic force

on expected price informativeness via tilting each trader’s aggressiveness toward a = 0. The
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less flatter functional form of Ja = Ja(ζa) at a = 1 arises from the boundedness of ζa, which

corresponds to that of (expected) price informativeness inherent in its welfare-based definition.

5 Market size and its state-wise variation

In this section, we explore the pattern of expected trading volume and price informativeness

under state-wise variation of market size. In Subsection 5.1, we first analyze the effects of

the state-wise variation of market size. In Subsection 5.2, we investigate how these effects con-

found the effects of (average) market size, thereby influencing qualitative properties of expected

trading volume and price informativeness.

5.1 Effects of state-wise variation of aggregate participation

In order to parametrize the state-wise variation of aggregate participation, we fix constants

CS ≥ 2 and CN ≥ 1 representing the average numbers of strategic and noise traders, respec-

tively, and set LS and LN to be functions of q denoted by L̃S = L̃S(q) and L̃N = L̃N(q),

respectively, as follows:

L̃S(q) = 1 +
CS − 1

q
and L̃N(q) = 1 +

CN − 1

q
.

The special case q = 1 corresponds to a market with fixed size having CS strategic traders

and CN noise traders. As q decreases to 1
2
, 1
3
, · · · , the model involves an uncertainty over the

numbers of strategic and noise traders. Also, as q decreases further, this uncertainty becomes

larger in the sense that the numbers of strategic and noise traders have higher variances, i.e.,

Var[MS] = (1/q − 1)(CS − 1)2 and Var[MN ] = (1/q − 1)(CN − 1)2.

Still, the average numbers of strategic and noise traders are invariant to the change in q, i.e.,

E[MS] = (1− q) · 1 + q ·
(
1 +

CS − 1

q

)
= CS;

E[MN ] = (1− q) · 1 + q ·
(
1 +

CN − 1

q

)
= CN .
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It is straightforward to extend this exercise to any real value of q ∈ (0, 1] as long as LS =

1 + (CS − 1)/q is an integer.24

At q = 1, there is no distinction between the benchmark case and the main case due to fixed

participation of CS strategic traders and CN noise traders. As q decreases from one toward

zero, randomness in market size appears in that the numbers of strategic and noise traders

depend on the realized state a ∈ {0, 1}, keeping their expected numbers fixed. The changes in

expected trading volume and price informativeness in the main case are given by

TVm|q<1 − TV |q=1 = TVm|q<1 − TVb|q<1︸ ︷︷ ︸
uncertainty effect

+TVb|q<1 − TV |q=1︸ ︷︷ ︸
randomness effect

;

E[PIm]|q<1 − E[PI]|q=1 = E[PIm]|q<1 − E[PIb]|q<1︸ ︷︷ ︸
uncertainty effect

+E[PIb]|q<1 − E[PI]|q=1︸ ︷︷ ︸
randomness effect

.

These changes are decomposed into two effects. First, randomness of market size changes TVm

and E[PIm] through the non-linearity of these variables in the realized numbers of participating

strategic and noise traders. Second, uncertainty over the aggregate participation facing strategic

traders leads to further changes in TVm and E[PIm].

In light of the two effects, the following proposition presents the sign of the resulting change

in expected trading volume in each of the benchmark case and the main case.

Proposition 5. For every CS ≥ 2 and CN ≥ 1, the following statements hold as q decreases

from one toward zero:

(i) When 1 = CN < CS, TVb decreases, TVm increases and TVm > TVb.

(ii) When 2 ≤ CN < CS, both TVb and TVm increase. For each q, TVm > TVb if 2 ≤ L̃N <√
L̃S, and TVm < TVb if

√
L̃S < L̃N < L̃S.

(iii) When 2 ≤ CN = CS, TVb increases, TVm doesn’t change and TVm < TVb.

(iv) When 2 ≤ CS < CN , TVb increases, TVm decreases and TVm < TVb.

Restricting attention to the main case, the resulting change in expected trading volume is

twofold. First, the sign of the randomness effect is positive (negative) if CN ≥ 2 (CN = 1).

24Even if LN = 1 + (CN − 1)/q is not an integer, it is natural to think of noise trading with variance L2
Nσ2

ω

(σ2
ω) at state a = 1 (a = 0).
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It follows from the fact that trading volume is convex (concave) in the “realized” market

size along the (L̃S, L̃N)-line in the (MS,MN)-space if CN ≥ 2 (CN = 1).25 Second, as seen

in Proposition 3, the sign of the uncertainty effect is positive (negative) when liquidity is

driven by informed trading (noise trading) (i.e., L̃S > L̃2
N (L̃S < L̃2

N)). It follows from the

dominance of the positive (negative) effect through asymmetric price impacts across states

over the opposing force through participation-conditional probabilities of states. The total

change in TVm resulting from a decrease in q is the sum of the two effects. When liquidity

is driven by informed trading, the uncertainty effect is dominant (i.e., when L̃N = 1) or both

effects are positive (i.e., when L̃N ≥ 2). Accordingly, TVm increases. When liquidity is driven

by noise trading, the randomness effect is positive, whereas the uncertainty effect is negative.

The proposition indicates that the randomness (uncertainty) effect is dominant so that the

total change of TVm is positive (negative) when CS > CN (CS < CN), which corresponds to

L̃S > L̃N (L̃S < L̃N). At CS = CN , which corresponds to L̃S = L̃N , the negative uncertainty

effect (i.e., TVm − TVb < 0 given q) balances the positive randomness effect (i.e., the increase

in TVb from a decrease in q).

Similarly, the following proposition presents the sign of change in expected price informa-

tiveness.

Proposition 6. For every CS ≥ 2 and CN ≥ 1, the following statements hold as q decreases

from one toward zero:

(i) When 1 = CN < CS, both E[PIb] and E[PIm] decrease, and E[PIm] < E[PIb].

(ii) When 2 ≤ CN < CS, both E[PIb] and E[PIm] decrease. For each q, E[PIm] < E[PIb] if

2 ≤ L̃N <
√
L̃S, and E[PIm] > E[PIb] if

√
L̃S < L̃N < L̃S.

(iii) When 2 ≤ CN = CS, E[PIb] decreases, E[PIm] doesn’t change and E[PIm] > E[PIb].

25If the number of noise traders is fixed (i.e., CN = 1), trading volume is concave in the realized and publicly

known number of participating strategic traders because each individual strategic trader chooses to be less

aggressive with a higher realized number of them, as implied by Proposition 1. By contrast, if CN ≥ 2, a higher

realized number of participating strategic traders comes with a higher realized number of participating noise

traders so that the latter may incentivize each individual strategic trader to trade more aggressively, overturning

the aforementioned concavity of trading volume. Indeed, this is the case for every CN ≥ 2.
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(iv) When 2 ≤ CS < CN , E[PIb] decreases, E[PIm] increases and E[PIm] > E[PIb].

First, the sign of the randomness effect is always negative due to the concavity of price

informativeness in the realized number of strategic traders MS in Equation (10). Second, as

seen in Proposition 4, the sign of the uncertainty effect is negative (positive) whenever liquidity

is driven by informed trading (noise trading) (i.e., L̃S > L̃2
N (L̃S < L̃2

N)). It follows from the

dominance of the negative (positive) effect through asymmetric price impacts across states over

the opposing force through participation-conditional probabilities of states. The total change

of E[PIm] resulting from a decrease in q is the sum of the two effects. When liquidity is driven

by informed trading, both effects are negative, meaning that E[PIm] decreases. When liquidity

is driven by noise trading, the uncertainty effect turns to be positive, while the randomness

effect is still negative. The proposition indicates that the randomness (uncertainty) effect is

dominant so that the total change in E[PIm] is negative (positive) when CS > CN (CS < CN),

which corresponds to L̃S > L̃N (L̃S < L̃N). At CS = CN , which corresponds to L̃S = L̃N , the

positive uncertainty effect (i.e., E[PIm]−E[PIb] > 0 given q) balances the negative randomness

effect (i.e., the decrease in E[PIb] from a decrease in q).

Overall, the effects of state-wise variations of market size on expected trading volume TVm

and expected price informativeness E[PIm] generally hinge on whether liquidity is driven by

informed or noise trading, highlighting the role of the uncertainty effect analyzed in Subsec-

tions 4.1 and 4.2. The only further complication arises from the additional randomness effect.

However, this additional effect changes only the specific condition for the relative ratio between

informed trading and noise trading to pin down the signs of changes in TVm and E[PIm], rather

than altering their qualitative pattern.

The following simulations (Figure 1) are consistent with the results depending on whether

liquidity is driven by informed trading with CN = 1 (two graphs on the first row) or CN ≥ 2

(two graphs on the second row) or liquidity is driven by noise trading (two graphs on the third

row). In these simulations, we take σ2
0 = σ2

ω = 1 and θ0 is irrelevant.

5.2 Effects of changing market size

Without any state-wise variation of aggregate participation (i.e., q = 1), our framework with

symmetric and risk-neutral strategic traders would provide fairly standard implications con-
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Figure 1: Effects of state-wise variation of aggregate participation (i.e., 1 − q): CS = 5 and

CN = 1 (first row), CS = 5 and CN = 2 (second row), CS = 2 and CN = 5 (third row)
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cerning the effect of changes in the numbers of strategic and noise traders. That is, Equations

(6) and (10) imply that increasing the number of strategic traders (i.e., LS) increases both

expected trading volume and price informativeness, whereas increasing the number of noise

traders (i.e., LN) increases expected trading volume and does not change expected price in-

formativeness. The increases in expected trading volume naturally arise from the general idea

that increasing market size enhances liquidity, thereby unambiguously increasing the aggregate

incentive to trade an asset despite a possible reduction in individual trading aggressiveness.26

The overall increase in expected price informativeness also follows from the same idea.

Even with a state-wise variation of market size (i.e., 0 < q < 1), the same arguments

continue to hold in the benchmark case, which is equivalent to fixed market size with MS

strategic traders and MN noise traders for each realized state a ∈ {0, 1} in terms of each

strategic trader’s trading aggressiveness.

However, our analysis with uncertain market depth (i.e., the main case) in Subsection 5.1

suggests that the above standard properties do not necessarily hold.

Proposition 7. As we change each of LS, LN , and q having other variables fixed, the following

statements hold.

(i) For large LS, increasing LS increases TVm. However, in this limit, it decreases E[PIm] if

0 < q < 1
2

(
1 +

√
L2
N

L2
N+4

)
, and increases E[PIm] if

1
2

(
1 +

√
L2
N

L2
N+4

)
< q < 1.

(ii) Increasing LN always increases TVm and E[PIm].

(iii) Increasing q increases E[PIm]. However, for large LS, as q increases from zero toward

one, TVm increases for q ∈
(
0, 1

3

)
, decreases for q ∈

(
1
3
, 3
4

)
, and then increases for q ∈(

3
4
, 1
)
. On the other hand, for large LN , as q increases from zero toward one, TVm always

increases.

Most notably, as the number of strategic traders LS increases, expected price informative-

ness may decrease in contrast to the corresponding change in price informativeness with fixed

participation discussed above. The decrease in expected price informativeness is attributed to

26The “aggregate” incentive to trade the asset refers to each trader’s incentive to trade given the aggregate

demand as seen in Equation (4). See Park (2024) for a formal description.
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an effective increase in the state-wise variation of overall participation of traders. Accordingly,

the additional uncertainty over market depth causes a confounding effect on expected price

informativeness together with the direct effect of (average) market size.

Formally, the main case is denoted by L = (q, LS, LN) following the notation of our model

in Section 2. Then its corresponding model with fixed participation, which is a special case of

our model with q = 1, is similarly denoted by C = (1, 1+ q(LS − 1), 1+ q(LN − 1)).27 Consider

an increase of LS by ∆. The resulting change in expected price informativeness is given by

E[PIm]|L′ − E[PIm]|L = PI|C′ − PI|C︸ ︷︷ ︸
average market size ↑

+ (E[PIm]|L′ − PI|C′)︸ ︷︷ ︸
post-change variation

− (E[PIm]|L − PI|C)︸ ︷︷ ︸
pre-change variation

,

where L′ = (q, LS + ∆, LN) and C ′ = (1, 1 + q(LS − 1) + q∆, 1 + q(LN − 1)). The first line

represents the change of (expected) price informativeness attributed to the increase in average

market size, which is unambiguously positive. On the second line, the first term represents

the part of post-change expected price informativeness attributed to the state-wise variation of

aggregate participation in line with our analysis in Subsection 5.1. Likewise, the second term

represents the corresponding part of pre-change expected price informativeness. Hence, their

difference on the second line contains the change of expected price informativeness attributed

to an effective increase in the state-wise variation of aggregate participation stemming from

the increase of LS by ∆.28 As discussed above, the first line is always positive. However,

as LS is sufficiently large, the confounding effect on the second line can be negative in line

with Proposition 6 (i.e., Parts (i) and (ii)) indicating a negative effect of state-wise variation

of aggregate participation on expected price informativeness. As seen in the proposition, the

possibility of dominance of the negative confounding effect occurs for large LS when the high-

liquidity probability q is not too close to one.

Such decrease in expected price informativeness seems to be less likely to be the case when

LS is relatively small, say LS = 2. In this case, as seen in Equation (10) for fixed participation

27While the formal definition is impeded by the integer constraint, it could be understood by restricting

attention to the case where q(LS − 1) is an integer in parallel with our analysis in Subsection 5.1.
28Its interpretation is further complicated by the non-separability of the change of average market size (from

C to C ′) and the change of state-wise variation in terms of their effects on expected price informativeness.
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(i.e., q = 1 so that MS = LS), the positive direct effect through average market size is relatively

large compared with the corresponding effect in the limit of large LS, making it less likely that

expected price informativeness decreases due to the negative confounding effect described above.

While it is analytically challenging to determine the sign of changes in expected trading volume

and price informativeness, we have found by simulations that both expected trading volume and

price informativeness increase when LS increases from 2 to 3 for various reasonable parameters

of the model.29

Combining these together, we can naturally expect that expected price informativeness is

hump-shaped in LS as long as the high-liquidity probability q is not too large (i.e., 0 < q <

1
2

(
1 +

√
L2
N

L2
N+4

)
). This property follows from the conjecture that the negative confounding

effect balances the positive direct effect at an intermediate threshold level of LS, and, above

that level of LS, the former becomes dominant, as formally verified in Proposition 7 only in the

limit of large LS. Indeed, in the upper-right graph in Figure 2, our simulation result confirms

the property for a set of parameters of the model, illustrating the optimal market size in terms

of LS for each q ∈ {0.1, 0.3, 0.5, 0.7}. For the rest of parameters, we use σ2
0 = σ2

ω = 1 and

LN = 5. According to the simulation result, the price-informativeness-maximizing level of LS

crucially depends on the high-liquidity probability q, which might differ across specific assets

in practice.

As seen in the upper-left graph in Figure 2, the highlighted decrease in expected price

informativeness comes with higher trading volume. As LS increases, the change in expected

trading volume can similarly be decomposed into its change attributed to increased average

market size and that attributed to the additional state-wise variation of aggregate participation.

As discussed above, the former is always positive. Moreover, when LS is large, the latter

confounding effect is positive as well in line with Proposition 5 (i.e., Parts (i) and (ii)) indicating

a positive effect of state-wise variation of aggregate participation on expected trading volume.

In this limit, Lemma 1 and Equation (5) imply

TVm →

LSq
√
1− 2q

√
2
π
σ2
ω if q < 1

2
;

√
LSLN

√
q3

2q−1

√
2
π
σ2
ω if q > 1

2
.

(12)

29We have not found any numerical example where either expected trading volume or price informativeness

decreases as LS increases from 2 to 3.
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Figure 2: Numerical results of TVm and E[PIm] across market size: Change in LS (upleft,

LN = 5 and q = 0.5) and that for q = 0.1, 0.3, 0.5, 0.7 (upright, LN = 5), change in LN

(downleft, LS = 5 and q = 0.5), change in q (downright, LS = 25 and LN = 1)
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For q < 1
2
, it is of higher order (i.e., O(LS)) than those in the benchmark case and with fixed

participation (i.e., q = 1), which corresponds to O(
√
LS) as implied by Equation (6). Even for

q > 1
2
, it is still higher despite the same order (i.e., O(

√
LS)) as implied by Proposition 3.

As the number of noise traders LN increases, expected trading volume and price informa-

tiveness always increase. With fixed market size (i.e., q = 1), Equation (6) implies that the

former would increase but Equation (10) implies that the latter would not change because

strategic traders adjust their aggressiveness proportionally in response to noise trade. With

market-depth uncertainty (i.e., q < 1), the increase in LN also leads to an increase in the state-

wise variation of market size, thereby strictly increasing expected price informativeness in line

with statement (iv) in Proposition 6. On the other hand, while the same confounding effect

via the state variation of market size is negative on expected trading volume in line with state-

ment (iv) in Proposition 5, it does not overturn the sign of overall change in expected trading

volume. These unambiguous increases in expected trading volume and price informativeness

are confirmed in our simulation result in the down-left graph in Figure 2.

As the high-liquidity probability q increases, expected price informativeness always in-

creases. However, this increase is not necessarily attributed to more informed trading by strate-

gic traders, which would lead to higher trading volume at the same time. Indeed, the above

expression of expected trading volume for large LS implies that it decreases for q ∈
(
1
3
, 3
4

)
.

Here, an increase in q involves not only a direct increase in the average market size but also

a change in the state-wise variation of aggregate participation, which is most pronounced in

the middle of range of q ∈ (0, 1). While the former direct effect through average market size

unambiguously increases both expected trading volume and price informativeness, the latter

effect is rather mixed throughout the range of q ∈ (0, 1). Most notably, expected trading vol-

ume may decrease by q in the upper-middle range of q ∈ (0, 1), where a marginal increase in

q reduces the state-wise variation of aggregate participation and thereby decreases expected

trading volume for large LS in line with Proposition 5 (i.e., Parts (i) and (ii)) indicating a

negative effect of decreasing the state-wise variation of aggregate participation on expected

trading volume. It could be explained with the (reverse) confounding effect via an effective

decrease in the state-wise variation of aggregate participation. For large LS, where the direct

positive effect through average market size is small as noted above, such confounding effect is
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dominant. In contrast to the possibility of non-monotonicity of expected trading volume, the

proposition indicates that the sign of overall change in expected price informativeness cannot

be overturned by the confounding effect via the state-wise variation of aggregate participation

for any q ∈ (0, 1). These properties are confirmed in our simulation result in the down-right

graph in Figure 2.

With the assumption of common per-unit value and common prior across strategic informed

traders, it seems rather standard in the literature that trading volume and price informative-

ness tend to be increasing in market size. For example, in the current framework based on

Kyle (1985) and its extension to complex information structures, such positive relation be-

tween market size and price informativeness is confirmed by Lambert et al. (2018) in the limit

of large market size.30 According to the literature beyond the current framework based on Kyle

(1985), the possibility of complex relation among these variables has been explained with het-

erogeneous valuations across strategic traders (e.g., Lee and Kyle (2022), Lou and Rahi (2023),

Rostek and Weretka (2012)). In the same spirit, various possible outcomes concerning price

informativeness can be obtained with belief disagreements (e.g., Davila and Parlatore (2021),

Park (2024)) or other forms of heterogeneity in trader characteristics (e.g., Kacperczyk et al.

(2024)). Without such heterogeneity across traders, the literature appears to suggest going be-

yond a single-market framework, such as incorporating cross-exchange interaction (e.g., Chen

and Duffie (2021)), to deviate from the standard argument that market expansion (fragmenta-

tion) increases (decreases) trading volume and price informativeness.

In contrast, our results are based on a single-market framework with common per-unit value

and common prior and information across strategic traders, thereby providing a clear case where

market expansion (fragmentation) may weaken (strengthen) the role of prices as information

aggregators for outside decision-makers. In our model, as LS increases, an increase in average

liquidity drives the positive direct effects of average market size on expected trading volume

and price informativeness.31 Nevertheless, the possibility of negative relation between market

size and expected price informativeness and the overall discrepancy between expected trading

30Their only caveat is the mild assumption that noise trade is uncorrelated or positively correlated with the

asset value.
31Ruling out uncertainty over market depth, Proposition 1 implies that liquidity (i.e., the inverse of Kyle’s

lambda) is increasing in (unchanged with) LS at state a = 1 (a = 0).
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volume and price informativeness are attributed to the state-wise variation of market size as

seen in Propositions 5 and 6 for large LS.

6 Further implications

6.1 Relation between trading volume and price volatility

The empirical relation between trading volume and price volatility has received considerable

interest in the literature. On the one hand, early studies document a contemporaneous on-

average positive relation between trading volume and price volatility (e.g., Karpoff (1987),

Jones et al. (1994)). On the other hand, more recent studies document the presence of volumes

which cannot be explained with price volatility.32 That is, large trading volume can be observed

even without price movements.

In standard equilibrium frameworks of financial markets (e.g., Kyle (1985)), the former type

of volumes that are associated with volatility can be explained with informed agents’ trades,

which reflect their private information and thus result in price movements. The latter type

of volumes that do not cause price movements can be modeled as exogenous noise trading,

which may arise from life cycle and risk-hedging.33 However, it has been argued that these

noise-creating trading motives are insufficient to explain large trading volume in practice (e.g.,

Hong and Stein (2007)). Accordingly, there is a long-held consensus that belief disagreements

across traders are required to explain large trading volume without substantial price movements.

Indeed, the model of traders with heterogeneous priors in Kandel and Pearson (1995) and its

reduced-form framework in Bollerslev et al. (2018) indicate that the positive volume-volatility

relation tends to be weaker with larger belief disagreements.

Extending Kyle (1985), our model with uncertain market depth can explain a weak or even

negative volume-volatility relation together with abnormally large trading volume even without

32Empirical evidence is particularly well-documented in the context of trading volume and price movements

following the release of new information, such as earnings and FOMC announcements (e.g., Kandel and Pearson

(1995), Bollerslev et al. (2018)).
33See Foster and Viswanathan (1990) and He and Wang (1995) for such frameworks based on noise trading

to explain the weak relationship between volume and volatility.
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belief disagreements. To begin with, we formally define (state-conditional) price volatility and

its expectation as follows:

Definition 5. Price volatility is the state-conditional variance of equilibrium price V OL :=

Var(p|a). Also, expected price volatility is its state-wise expectation E[V OL].

Our definition of price volatility as the idiosyncratic variance is consistent with previous

studies (e.g., Davila and Parlatore (2023)). While volatility is inherently a dynamic concept,

the current definition could be non-substantially extended to a “repeated static economy” with

short-lived private information as in Davila and Parlatore (2023). On the other hand, expected

price volatility reflects the cross-sectional and/or time-series average of price volatility, which

varies across assets and time in practice due to the randomness of realized state.

Price volatility defined above is equivalent to price informativeness in the current model.

Formally, we have V OL = Var (E[θ|a, y]|a) = PI for each state a ∈ {0, 1}. This relation is com-

monly adopted in the empirical literature.34 For example, Campbell et al. (2023) stated that

“idiosyncratic volatility serves as an empirical proxy for the flow of firm-specific information.”

Likewise, its expectation is equal to expected price informativeness. Given the equivalence be-

tween price volatility and informativeness, it naturally follows that the relation between trading

volume and (expected) price volatility is positive across states a ∈ {0, 1} in the benchmark

case.35

Now suppose that a sample of observations features a variation of uncertainty over the ag-

gregate participation. As seen throughout Sections 4 and 5, such variation could arise from

changes in the availability of state-relevant information (Section 4), changes in the extent of

variation of aggregate participation (Subsection 5.1), and market expansion or fragmentation

(Subsection 5.2). Combined with the equivalence between price informativeness and volatil-

ity, our results imply that subsamples of observations with different levels of uncertainty over

the aggregate participation will present a negative cross-subsample correlation between trading

volume and price volatility. For example, if some event causes an uncertainty over aggregate

34On the theoretical side, it is not entirely general beyond the current framework (e.g., Davila and Parlatore

(2023)).
35Formally, as we move from a = 0 to a = 1, MS and MN increase strictly and weakly, respectively. Then

Equation (6) implies that TVb increases, and Equation (10) implies that E[V OL] = E[PIb] increases as well.
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participation and liquidity is driven by informed trading (noise trading), post-event observa-

tions tend to have higher (lower) trading volume and lower (higher) expected price volatility

compared with pre-event observations (Propositions 3 and 4). Therefore, these post-event ob-

servations can be empirically captured as abnormally high (low) trading volume not explained

by expected price volatility.

Moreover, our results imply that the former case of relatively high post-event trading volume

is likely to be dominant, driving an increase in trading volume on average following the event.

Specifically, in the former case, the increased trading volume may be increasing in market size

qualitatively at a steeper pace compared with the corresponding pre-event volume, whereas,

in the latter case, the decreased trading volume is still increasing in market size qualitatively

at the same pace as before.36 Hence, even a relatively small fraction of such observations

corresponding to large LS in our model may result in an increase in trading volume on average

throughout the entire sample.

Overall, the main results of our analysis can explain empirically relevant features of large

and abnormal trading volume that cannot be explained by price volatility. Admitting that

our model abstracts from belief disagreements which would alternatively cause similar features

of trading volume, we suggest that these results complement the existing explanation in the

literature based on belief disagreements.

Last, let us discuss the possibility of empirically testing our explanations on the pattern

of trading volume and prices. The key prediction from our analysis is that the effects of

uncertainty over market depth on trading volume and price informativeness hinge on whether

liquidity is driven by informed or noise trading. The empirical challenge is twofold. First,

the measurement of market-depth uncertainty facing informed market participants depends on

proxies based on realized liquidity measures, rather than being direct. Bali et al. (2014) used

a deviation of realized liquidity from its average level in the past 12 months or the conditional

mean of ARMA(1,1) specification to measure stock-level liquidity shock, showing that such

liquidity shock is not correctly priced in the short run. Based on their finding, we could at least

36As discussed in Subsection 5.2, TVm = O(LS) is of higher order than TVb = O(
√
LS) for large LS , fixed

LN , and q < 1
2 by Equations (6) and (12). On the other hand, for large LN and fixed LS , it is formally shown

by the proof of Proposition 7 and Equation (6) that TVm = O(LN ) and TVb = O(LN ) as well.
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partially interpret such deviation from the time-series average as the extent of uncertainty over

market depth. Second, the distinction between liquidity driven by informed trading and that

driven by noise trading also depends on indirect proxies. In the benchmark case of the model,

the state of nature with higher liquidity causes lower (higher) per-trader volume (Proposition

1) in the former (latter) scenario. Also, this relation is weakened with uncertainty over market

depth, as seen in the main case of the model (Proposition 2). Thus, conditional on relatively less

uncertainty over market depth, the sign of observed relation between liquidity and per-trader

volume can be used to distinguish between the two scenarios. That is, its negative (positive)

sign is consistent with the former (latter) scenario. Still, it might not be straightforward to

observe per-trader volume, which would require investor-level transaction data, in practice.

6.2 Effects of transparency on price informativeness

In this subsection, we discuss the implications of our main results on the impact of transparency

in financial markets. The theoretical literature is mostly based on REE models abstracting

from market depth and restricts attention to the side of transparency concerning asset-payoff-

relevant information as reviewed in Subsection 1.1. However, due to the lack of alternative

sources of public information, transparency is a concern of policy relevance in small markets

that typically consist of only a few institutional traders and market-maker(s), such as alternative

trading systems. One non-trivial aspect of transparency in such markets is information on the

aggregate participation of traders, which could be indirectly revealed through the number and

volume of executed orders. The absence of such information naturally causes an uncertainty

over market depth.37

In our model, a transparency reform concerning information on the aggregate participation

of traders can be regarded a change from the main case to the benchmark case. As it corresponds

to the reverse of our analysis in Section 4 (i.e., Propositions 3 and 4), it increases (decreases)

expected price informativeness when liquidity is driven by informed trading (noise trading).

The latter outcome occurs despite an increase in expected trading volume, which is often casu-

37One extreme type of opaqueness is so-called “dark pools”, which refer to private trading exchanges for

trading securities without being known to others. However, as they are opaque even about prices, the model

does not apply in a straightforward manner.
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ally regarded as an indicator of market efficiency. Taken together with the fact that expected

price informativeness reflects real efficiency, this suggests that the reform may have unintended

consequences of lowering real efficiency via lower price informativeness on average. According

to the discussion following Proposition 4, it is mainly driven by participation-conditional prob-

abilities of states, which are tilted toward the high-liquidity state in the main case (i.e., before

the reform) but go back to the prior in the benchmark case (i.e., after the reform). As a result,

when liquidity is driven by noise trading, each trader’s average aggressiveness tends to decrease

following the reform as it is tilted toward the prior putting more weight on the low-liquidity

state.

More generally, one may consider a transparency reform concerning asset-payoff-relevant

information. Examples of such policies include the mandate or standardization of public in-

formation, which would make it easier for investors to access the information. Then the above

argument regarding information on the aggregate participation of traders may still hold as one

of various channels of changes through enhanced transparency. For example, improving the

ease of acquiring common information may make it more likely that others’ participation is

known to each strategic trader because it enables him to second-guess others’ attentiveness to

the asset. In this case, a similar conclusion is obtained regarding a potentially negative effect

of transparency reforms on price informativeness when liquidity is driven by noise trading (i.e.,

LS < L2
N in our model).38

7 Concluding remarks

The main objective of this paper is to analyze the implications of uncertainty over the overall

participation of traders and the resulting market depth in financial markets. We analyze a

model of strategic traders submitting market orders where they are uncertain of the overall

participation of strategic and noise traders, which determines the market depth and their

trading opportunities. The analysis highlights the significance of knowledge on the overall

38For example, consider a transparency reform as an increase in the prior probability q from qN to qT together

with a change from the main case to the benchmark case. Then, despite the positive effect of increasing q on

expected price informativeness through improved liquidity on average, this is the case in the second large-market

scenario for every qN and qT where 0 < qN < qT < 1.
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participation of traders and the resulting market depth, thereby confirming our motivating

argument on the potential complication of the effects of market size. In addition, the analysis

can provide implications on the pattern of price volatility and the impact of transparency

reforms which would not be straightforward without market-depth uncertainty.

The mechanism behind these results can be explained with two economic forces arising from

asymmetric price impacts across states and participation-conditional probabilities, respectively.

These forces are generally robust in the following two directions of possible extensions.

First, the two forces persist with an arbitrary distribution of the numbers of participating

strategic and noise traders (i.e., MS and MN), which need not be perfectly correlated or binary

as in the current model. In parallel with our analysis in Section 4, the influence of their

two-dimensional uncertainty on expected trading volume would still generally depend on (i)

the variation of slopes in Ia(νa) across (possibly multidimensional) states a representing the

realization of MS and MN and (ii) participation-conditional probabilities of states.39 The same

argument applies to its influence on expected price informativeness. These suggest that the

overall intuition put forth in Section 4 behind changes in expected trading volume and price

informativeness would be largely unaffected even though a larger set of possible outcomes would

likely arise due to higher degrees of freedom in terms of the distribution of MS and MN .

Second, these forces are still present in the case of strategic traders holding noisy signals.40

Compared with the current model with strategic traders perfectly knowing the asset value, there

are two additional considerations: (i) less informed trading leads to less adverse selection and

thus weakens the first economic force from asymmetric price impacts across states, whereas the

other one from participation-conditional probabilities of states is intact; (ii) a less-than-perfect

correlation of strategic traders’ errors means that new traders’ entry delivers additional infor-

39For example, consider two possible states a ∈ {0, 1} such that a = 1 (a = 0) is a state of higher proportion of

MS (MN ). As in our main analysis for LS > L2
N in Section 4, the former leads to smaller trading opportunities

for each strategic trader compared with the latter. Then, we may expect TVm > TVb when (i) the slope of

Ia(νa) is flatter at a = 1 compared with that at a = 0 (e.g., a larger variation of MS across states compared with

that of MN ) and (ii) the economic force through asymmetric price impacts dominates the other force through

participation-conditional probabilities of states.
40Formally, we may consider the situation where each strategic trader has a noisy signal si = θ + ϵi, where

ϵi is a normal error possibly correlated across traders. The analysis of this extension is available upon request

from the authors.
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mation, making it more likely that price informativeness increases in larger markets. Formally,

our extended analysis shows that Proposition 3 is weakened by and Proposition 4 is robust

to such noisy signals, as is consistent with the first argument above. Also, the possibility of

decrease in price informativeness in larger market size (i.e., larger LS) presented in Proposition

7 still (no longer) exists even with large signal errors if the correlation of signal errors across

strategic traders is positive (zero) in line with the second argument above.41

We close the paper by discussing two broader possible extensions of interest.

First, the model may be extended to the situation where strategic traders endogenously and

costly acquire their information. For example, endogenous acquisition on asset-payoff-relevant

information (i.e., information on θ) might matter for our results on expected price informative-

ness. In particular, when LS > L2
N (LS < L2

N), as we move from the benchmark case to the

main case, the resulting decrease (increase) in expected price informativeness (by Proposition

4) might come with an increase (a decrease) in trading opportunities. If so, strategic traders

would intuitively choose to acquire more (less) asset-payoff-relevant information, possibly coun-

teracting the change in expected price informativeness. However, this idea does not necessarily

hold with market-depth uncertainty in our model. In particular, when LS > L2
N (LS < L2

N),

the decrease (increase) in expected price informativeness may actually come with a decrease

(increase) in the expected profit for each strategic trader.42 It suggests that endogenous acqui-

sition of asset-payoff-relevant information may actually reinforce the change in expected price

informativeness rather than counteracting it. More broadly, an extensive analysis of infor-

mation choice involving asset-payoff-relevant and aggregate-participation-relevant information,

the latter of which can be regarded as an alternative way of formalizing information on market

conditions considered in Ganguli and Yang (2009) and Farboodi and Veldkamp (2020), is an

interesting revenue for future research.

Second, given the empirical relevance of time-varying liquidity (e.g., Chordia et al. (2000),

41The intuition is that higher correlation of signal errors means less “additional” information delivered by a

new trader entering the market, weakening the second argument above.
42Formally, as LS is large and LN is fixed, the expected profit for each strategic trader always decreases as

we move from the benchmark case to the main case. Also, as LN is large and LS is fixed, the expected profit

for each strategic trader increases (decreases) if LS > 1/q (LS < 1/q). The formal analysis and the proof of

these statements are available upon request from the authors.
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Huberman and Halka (2001)), the model may be extended to a dynamic setting with multiple

trading rounds. Such multi-period extension deviates from our current single-period model

when asset-payoff-relevant private information held by informed traders is long-lived and/or

state-relevant private information held by the market-maker is long-lived. The former has

long been studied with the standard assumption of constant market depth (e.g., Holden and

Subrahmanyam (1992)). Moreover, the latter is considered in Hong and Rady (2002) reviewed

in Subsection 1.1, suggesting that agents learn about the state from past prices and trading

volume when the state is stochastically persistent (i.e., it can be inferred from past realizations).

Still, it appears to be the case in practice that such learning cannot be perfect as persistent

and temporary components of liquidity coexist, the latter of which would correspond to an

unpredictable shock to liquidity motivating our model as described in the Introduction (Bali

et al. (2014)). Thus, it is of interest to consider what would occur with the former assumption

(i.e., long-lived asset-payoff-relevant private information held by informed traders) but not the

latter one (e.g., assuming that the state is independently distributed in each period). We

speculate that the two economic forces driving our results would largely persist in this dynamic

setting as they would be present in each period regardless of the past-information-adjusted

prior of asset value.

Appendix: Proofs

Proof of Proposition 1

Solving (4) yields

xi =
1− λβ(MS − 1)

2λ
(θ − θ0) =

1− MS−1
MS

σ2
0

σ2
0+

M2
N

σ2
ω

M2
S
β2

2
MSβ

σ2
0

σ2
0+

M2
N

σ2
ω

M2
S
β2

(θ − θ0),
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where the second equality follows from (2). Matching the coefficient in the last equality with

the conjectured one gives

β∗
b =

1− MS−1
MS

σ2
0

σ2
0+

M2
N

σ2
ω

M2
S
(β∗

b
)2

2
MSβ

∗
b

σ2
0

σ2
0+

M2
N

σ2
ω

M2
S
(β∗

b
)2

,

which implies

MS + 1

MS

σ2
0

σ2
0 +

M2
Nσ2

ω

M2
S(β

∗
b )

2

= 1. (13)

Part (ii) follows directly from (13). The first result in Part (i) is derived from (2) and the

expression for β∗
b given in Part (ii). Since

√
MS

MS+1
1

MN
is strictly decreasing in MS and MN , the

second result in Part (i) follows. The proof is completed. □

Proof of Proposition 2

We first prove the first part. From Equations (2) and (1), we have

E[λ|Ii] =
1

β

[(
1− (LS − 1)q

(LS − 1)q + 1

LS

LS − 1

)
σ2
0

σ2
0 +

σ2
ω

β2

+
(LS − 1)q

(LS − 1)q + 1

LS

LS − 1

1

LS

σ2
0

σ2
0 +

L2
Nσ2

ω

L2
Sβ

2

]

and

E[λ(MS − 1)|Ii] =
(LS − 1)q

(LS − 1)q + 1

LS

LS − 1

LS − 1

LSβ

σ2
0

σ2
0 +

L2
Nσ2

ω

L2
Sβ

2

.

Thus, solving (4) and using the above two relations yields

xi =

1− (LS−1)q
(LS−1)q+1

σ2
0

σ2
0+

L2
N

σ2
ω

L2
S
β2

2
β

[(
1− (LS−1)q

(LS−1)q+1
LS

LS−1

)
σ2
0

σ2
0+

σ2
ω

β2

+ (LS−1)q
(LS−1)q+1

1
LS−1

σ2
0

σ2
0+

L2
N

σ2
ω

L2
S
β2

](θ − θ0).

Matching the coefficient in the last equality with the conjectured one gives

β∗
m =

1− (LS−1)q
(LS−1)q+1

σ2
0

σ2
0+

L2
N

σ2
ω

L2
S
(β∗m)2

2
β∗
m

[(
1− (LS−1)q

(LS−1)q+1
LS

LS−1

)
σ2
0

σ2
0+

σ2
ω

(β∗m)2

+ (LS−1)q
(LS−1)q+1

1
LS−1

σ2
0

σ2
0+

L2
N

σ2
ω

L2
S
(β∗m)2

] .
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Rearranging terms leads to

(LS + 1)q

(LS − 1)q + 1

σ2
0

σ2
0 +

L2
Nσ2

ω

L2
S(β

∗
m)2

+
1− q

(LS − 1)q + 1

2σ2
0

σ2
0 +

σ2
ω

(β∗
m)2

= 1, (14)

which is further equivalent to

(LS + 1)q

(LS − 1)q + 1
σ2
0

(
σ2
0 +

σ2
ω

(β∗
m)

2

)
+ 2σ2

0

1− q

(LS − 1)q + 1

(
σ2
0 +

L2
Nσ

2
ω

L2
S(β

∗
m)

2

)
=

(
σ2
0 +

σ2
ω

(β∗
m)

2

)(
σ2
0 +

L2
Nσ

2
ω

L2
S(β

∗
m)

2

)
. (15)

Let t = σ2
ω

σ2
0(β

∗
m)2

for notational simplicity. Then, Equation (15) can be rewritten as

f(t) :=− L2
N

L2
S

t2 +

(
(LS + 1)q

(LS − 1)q + 1
+

2(1− q)

(LS − 1)q + 1

L2
N

L2
S

− 1− L2
N

L2
S

)
t

+
2(1− q) + (LS + 1)q

(LS − 1)q + 1
− 1

=− L2
N

L2
S

t2 +

(
L2
N

L2
S

1− q − LSq

(LS − 1)q + 1
+

2q − 1

(LS − 1)q + 1

)
t+

1

(LS − 1)q + 1
= 0. (16)

Since the quadratic function satisfies f(0) > 0 and f(t) → −∞ as t → ∞, there exists a unique

positive root to f(t) = 0, given by

t =
L2
S

2L2
N


L2
N

L2
S
(1− q − LSq) + 2q − 1

(LS − 1)q + 1
+

√√√√√
 L2

N

L2
S
(1− q − LSq) + 2q − 1

(LS − 1)q + 1

2

+
4
L2
N

L2
S

(LS − 1)q + 1

 .

Next, we show the inequalities comparing β∗
m with β∗

b for a ∈ {0, 1}. Consider the first

case LS > L2
N . Proposition 1 implies that

√
L2
Nσ2

ω

LSσ
2
0

= β∗
b |a=1 < β∗

b |a=0 =
√

σ2
ω

σ2
0
. Recall that

t = σ2
ω

σ2
0(β

∗
m)2

. The relation β∗
b |a=1 < β∗

m < β∗
b |a=0 is equivalent to 1 < t < LS/L

2
N , which further

translates to f(LS/L
2
N) < 0 < f(1), where f(·) is defined in (16). Simple calculations confirm

that f(LS/L
2
N) < 0 < f(1) holds under the condition LS > L2

N . The proof for the case LS < L2
N

is analogous and omitted here. The proof is completed. □

Proof of Lemma 1

Recalling the notation t = σ2
ω

σ2
0(β

∗
m)2

introduced in the proof of Proposition 2, we analyze the

equilibrium for the following three cases of large markets.
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• Scenario 1. Liquidity driven by informed trading: LS → ∞ and LN is fixed. Defining

s = σ2
ω

σ2
0(LSβ∗

m)2
, we express t as t = sL2

S. From Equation (16), which defines t, we derive

that s satisfies the following equation

s2 − (1− q − LSq)L
2
N + (2q − 1)L2

S

L2
NL

2
S[(LS − 1)q + 1]

s− 1

L2
NL

2
S[(LS − 1)q + 1]

= 0.

Solving for s, we obtain

s =
(1− q − LSq)L

2
N + (2q − 1)L2

S +
√[

(1− q − LSq)L2
N + (2q − 1)L2

S

]2
+ 4L2

NL2
S [(LS − 1)q + 1]

2L2
NL2

S [(LS − 1)q + 1]
.

(17)

In this scenario, when q > 1
2
, it follows from (17) that sLS → 2q−1

L2
N q

, implying that
√
LSβ

∗
m → LN

√
q

2q−1
σ2
ω

σ2
0
. For q < 1

2
, from (16), t satisfies

t2 − L2
N(1− q − LSq) + (2q − 1)L2

S

L2
N [(LS − 1)q + 1]

t− L2
S

L2
N [(LS − 1)q + 1]

= 0. (18)

A contradiction argument for (18) shows that t → 1
1−2q

, leading to β∗
m →

√
σ2
ω(1−2q)

σ2
0

.

• Scenario 2. Liquidity driven by noise trading: LS → ∞ and
L2
N

LS
→ ∞. From (18), we

derive

t2 −
L2
N

LS
(1− q − LSq) + (2q − 1)LS

L2
N

LS
[(LS − 1)q + 1]

t− LS

L2
N

LS
[(LS − 1)q + 1]

= 0. (19)

In this scenario, we can show that tL2
N/LS → 1/q. As a result, it holds that

√
LS

LN
β∗
m →√

σ2
ωq

σ2
0
.

• Scenario 3. “Middle” scenario: LS → ∞ and
L2
N

LS
→ ρ for some ρ ∈ (0,∞). In this

scenario, taking the limit of (19), we obtain

t2 +
ρq − 2q + 1

ρq
t− 1

ρq
= 0.

Solving for t, we find that the limit of t equals
−(ρ−2)q−1+

√
((ρ−2)q+1)2+4ρq

2ρq
. Consequently,

β∗
m converges to the specified expression in the lemma.

The proof is completed. □
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Proof of Proposition 3

From Equation (5) for β∗ = β∗
b and Equation (7), we derive the expected trading volumes

TVb = (qLSβ
∗
b |a=1 + (1− q)β∗

b |a=0)

√
2

π
σ2
0 + ((LN − 1)q + 1)

√
2

π
σ2
ω,

TVm = ((LS − 1)q + 1)β∗
m

√
2

π
σ2
0 + ((LN − 1)q + 1)

√
2

π
σ2
ω. (20)

It follows that TVm > TVb if and only if

(LSq + 1− q)β∗
m > qLSβ

∗
b |a=1 + (1− q)β∗

b |a=0 = (qLN

√
LS + 1− q)

√
σ2
ω

σ2
0

,

where the equality follows from Proposition 1. Rearranging, this condition is equivalent to

t < (LSq+1−q)2

(qLN
√
LS+1−q)2

, where t = σ2
ω

σ2
0(β

∗
m)2

is as defined in the proof of Proposition 2. Observing that

the quadratic equation f(·) in (16) has a unique positive root and satisfies that f(0) > 0 and

f(t) → −∞ as t → ∞, the inequality t < (LSq+1−q)2

(qLN
√
LS+1−q)2

holds if and only if f
(

(LSq+1−q)2

(qLN
√
LS+1−q)2

)
<

0. Expanding this condition leads to the inequality

L2
N

L2
S

(LSq + 1− q)4

(qLN

√
LS + 1− q)4

−
(
L2
N

L2
S

1− q − LSq

(LS − 1)q + 1
+

2q − 1

(LS − 1)q + 1

)
(LSq + 1− q)2

(qLN

√
LS + 1− q)2

− 1

(LS − 1)q + 1
> 0.

The preceding inequality can be equivalently written as

L2
N(LSq + 1− q)4((LS − 1)q + 1)− L2

S(qLN

√
LS + 1− q)4

−
(
L2
N(1− q − LSq) + (2q − 1)L2

S

)
(qLN

√
LS + 1− q)2(qLS + 1− q)2 > 0. (21)

To simplify notation, let c = LN/
√
LS. Then the left-hand side of (21) can be written as

(LSq + 1− q)5c2 −
(
(1− q − LSq)c

2 + (2q − 1)LS

)
(LSqc+ 1− q)2(LSq + 1− q)2

− LS(LSqc+ 1− q)4 =: A.

We next analyze the sign of A. After algebraic manipulation, we obtain

A

LSq(c− 1)
= 2 + 2c− 2c2 − 2LS

+ q
(
−8− 8c+ 8c2 + 10LS + 8cLS − 3c2LS − c3LS − L2

S − 5cL2
S

)
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+ q2
(
12 + 12c− 12c2 − 18LS − 24cLS + 9c2LS + 3c3LS + 4L2

S

+ 20cL2
S + c2L2

S − c3L2
S − 2cL3

S − 4c2L3
S

)
+ q3

(
− 8− 8c+ 8c2 + 14LS + 24cLS − 9c2LS − 3c3LS − 5L2

S

− 25cL2
S − 2c2L2

S + 2c3L2
S + 6cL3

S + 7c2L3
S + c3L3

S − c2L4
S − c3L4

S

)
+ q4

(
2 + 2c− 2c2 − 4LS − 8cLS + 3c2LS + c3LS + 2L2

S + 10cL2
S

+ c2L2
S − c3L2

S − 4cL3
S − 3c2L3

S − c3L3
S + c2L4

S + c3L4
S

)
=: b0 + b1q + b2q

2 + b3q
3 + b4q

4 =: g(q).

We have g(1) = 0,

g′(q)|q=1 = −8− 8c+ 8c2 + 10LS + 8cLS − 3c2LS − c3LS − L2
S − 5cL2

S

+ 2
(
12 + 12c− 12c2 − 18LS − 24cLS + 9c2LS + 3c3LS + 4L2

S

+ 20cL2
S + c2L2

S − c3L2
S − 2cL3

S − 4c2L3
S

)
+ 3
(
− 8− 8c+ 8c2 + 14LS + 24cLS − 9c2LS − 3c3LS − 5L2

S

− 25cL2
S − 2c2L2

S + 2c3L2
S + 6cL3

S + 7c2L3
S + c3L3

S − c2L4
S − c3L4

S

)
+ 4
(
2 + 2c− 2c2 − 4LS − 8cLS + 3c2LS + c3LS + 2L2

S + 10cL2
S

+ c2L2
S − c3L2

S − 4cL3
S − 3c2L3

S − c3L3
S + c2L4

S + c3L4
S

)
= −2cL3

S + c2L3
S − c3L3

S + c2L4
S + c3L4

S

= cL3
S(−2 + c− c2 + cLS + c2LS).

Recall c = LN/
√
LS. As a result,

−2 + c− c2 + cLS + c2LS = −2 + LN/
√

LS − L2
N/LS + LN

√
LS + L2

N ,

which is positive for any LS ≥ 2 and LN ≥ 1. That is, g′(q)|q=1 > 0 for any LS ≥ 2 and LN ≥ 1.

With some calculations we can also show that

g(0) = b0 = 2(1 + c− c2 − LS) = 2(1 + LN/
√

LS − L2
N/LS − LS)

is negative for any LS ≥ 2 and LN ≥ 1. Moreover, the coefficients of g(·) satisfy b1 < 0, b2 < 0,

b3 < 0 and b4 > 0 for every LS ≥ 4 and LN ≥ 4.
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We now analyze the number of positive roots of the polynomial g(q) = b0 + b1q + b2q
2 +

b3q
3 + b4q

4 = 0. Given that b0 < 0, b1 < 0, b2 < 0, b3 < 0 and b4 > 0, the sequence of

coefficients exhibits exactly one sign change. Consequently, by Descartes’ Rule of Signs, the

polynomial g(·) has exactly one positive root, counting multiplicities. Furthermore, we have

g(0) < 0, g(1) = 0 and g′(1) > 0. These conditions imply that g(q) < 0 for any 0 < q < 1.

Thus, when LS ≥ 4 and LN ≥ 4, it holds that A > 0 if c < 1, and A < 0 if c > 1. In other

words, TVm > TVb when LS > L2
N , and TVm < TVb when LS < L2

N . The proof is completed.

□

Proof of Proposition 4

From Equation (9) for β∗ = β∗
m and Equation (11), we observe that E[PIm] < E[PIb] if and

only if

σ2
0

 1− q

σ2
0 +

σ2
ω

(β∗
m)2

+
q

σ2
0 +

L2
Nσ2

ω

L2
S(β

∗
m)2

 <
1− q

2
+

qLS

LS + 1
,

which can be rewritten as

1− q

1 + σ2
ω

σ2
0(β

∗
m)2

+
q

1 +
L2
Nσ2

ω

σ2
0L

2
S(β

∗
m)2

<
1− q

2
+

qLS

LS + 1
.

Recall the notation t = σ2
ω

σ2
0(β

∗
m)2

introduced in the proof of Proposition 2. Substituting t into

the inequality and rearranging the terms yields

− L2
N

L2
S

(
1− q

2
+

qLS

LS + 1

)
t2

+

[
(1− q)L2

N

L2
S

+ q −
(
1− q

2
+

qLS

LS + 1

)(
L2
N

L2
S

+ 1

)]
t+ 1− 1− q

2
− qLS

LS + 1
< 0.

From (16), we can further simplify the inequality to

−
(
1− q

2
+

qLS

LS + 1

)[(
L2
N

L2
S

1− q − LSq

(LS − 1)q + 1
+

2q − 1

(LS − 1)q + 1

)
t+

1

(LS − 1)q + 1

]
+

[
(1− q)L2

N

L2
S

+ q −
(
1− q

2
+

qLS

LS + 1

)(
L2
N

L2
S

+ 1

)]
t+ 1− 1− q

2
− qLS

LS + 1
< 0.

This can be rearranged as[
(1− q)L2

N

L2
S

+ q −
(
1− q

2
+

qLS

LS + 1

)(
2L2

N

L2
S

1− q

(LS − 1)q + 1
+

(LS + 1)q

(LS − 1)q + 1

)]
t
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+ 1−
(
1− q

2
+

qLS

LS + 1

)
(LS − 1)q + 2

(LS − 1)q + 1
=: k1(q)t+ k2(q) < 0.

Observe that

k2(q) = 1− LS + 1 + (LS − 1)q

2(LS + 1)

(LS − 1)q + 2

(LS − 1)q + 1

∝ 2(LS + 1)[(LS − 1)q + 1]− [LS + 1 + (LS − 1)q][(LS − 1)q + 2]

= (LS − 1)2q(1− q) > 0, (22)

and

k1(q) + k2(q)

=
(1− q)L2

N

L2
S

+ q −
(
1− q

2
+

qLS

LS + 1

)(
2L2

N

L2
S

1− q

(LS − 1)q + 1
+

(LS + 1)q

(LS − 1)q + 1

)
+ 1−

(
1− q

2
+

qLS

LS + 1

)
(LS − 1)q + 2

(LS − 1)q + 1

=
(1− q)L2

N

L2
S

+ 1 + q − 2

(
1− q

2
+

qLS

LS + 1

)
LSq + 1 + L2

N(1− q)/L2
S

(LS − 1)q + 1

∝ (1− q)L2
N(LS + 1)[(LS − 1)q + 1] + (1 + q)L2

S(LS + 1)[(LS − 1)q + 1]

− [LS(1 + q) + 1− q]L2
S[LSq + 1 + L2

N(1− q)/L2
S]

= [(L2
S − L2

N)q + L2
N + L2

S][(L
2
S − 1)q + LS + 1]

− [(LS − 1)q + LS + 1][(L3
S − L2

N)q + L2
S + L2

N ]

= −LS(LS − 1)(LS − L2
N)q(1− q). (23)

Note that we have already shown that k2(q) > 0 for any 0 < q < 1 in (22), t > 1 if LS > L2
N ,

while t < 1 if LS < L2
N in the proof of Proposition 2. Thus, when LS > L2

N , it holds that

k1(q) < 0 due to k1(q)+k2(q) < 0 by (23), and consequently, k1(q)t+k2(q) < k1(q)+k2(q) < 0.

Similarly, when LS < L2
N , it holds that k1(q)t + k2(q) > 0 if k1(q) ≥ 0, and k1(q)t + k2(q) >

k1(q)+k2(q) > 0 if k1(q) < 0 according to (23). Thus, we conclude that E[PIm] < E[PIb] when

LS > L2
N , and E[PIm] > E[PIb] when LS < L2

N . The proof is completed. □

Proof of Proposition 5

By Equation (5) and E[MN ] = CN , we obtain

TV = E[MSβ
∗]

√
2

π
σ2
0 + CN

√
2

π
σ2
ω.
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Therefore, TVb is equivalent to E[MSβ
∗
b ] in the benchmark case, while TVm is equivalent to β∗

m

in the main case due to the relation E[MSβ
∗
m] = E[MS]β

∗
m = CSβ

∗
m.

We first show that E[MSβ
∗
b ] increases (decreases) as q decreases when CN ≥ 2 (CN = 1).

To show this, by Proposition 1, we have

E[MSβ
∗
b ] =

[
1− q + q

√
1 +

CS − 1

q

(
1 +

CN − 1

q

)]√
σ2
ω

σ2
0

.

Differentiating it with respect to q, we get(√
σ2
ω

σ2
0

)−1

∂E[MSβ
∗
b ]

∂q
= −1 +

√
1 +

CS − 1

q
− CS − 1

2q2
q + CN − 1√

1 + CS−1
q

.

TVb increases as q decreases if and only if
∂E[MSβ

∗
b ]

∂q
< 0, which is equivalent to the condition

L̃S − (L̃S − 1)L̃N

2
<

√
L̃S.

The above inequality holds if and only if L̃N ≥ 2, but does not hold when L̃N = 1.

Next, we show that β∗
m increases (decreases) as q decreases when CN < CS (CN > CS), and

remains unchanged when CN = CS. Using the notation t = σ2
ω

σ2
0(β

∗
m)2

introduced in the proof of

Proposition 2, it is equivalent to show that t decreases (increases) as q decreases when CN < CS

(CN > CS), and remains constant when CN = CS. By the relations (L̃S − 1)q + 1 = CS, and

1− q − L̃Sq = −(CS + 2q − 2), (16) simplifies to

−
[
1 + (CN − 1)/q

1 + (CS − 1)/q

]2
t2 +

([
1 + (CN − 1)/q

1 + (CS − 1)/q

]2 −(CS + 2q − 2)

CS

+
2q − 1

CS

)
t+

1

CS

= 0.

Defining B(q) =
[
1+(CN−1)/q
1+(CS−1)/q

]2
, we can rewrite the above equation as

w(q, t) := B(q)t2 +

(
B(q)

CS + 2q − 2

CS

+
1− 2q

CS

)
t− 1

CS

= 0. (24)

Let tmax denote the unique positive root of Equation (24). Fixing t = tmax and varying q,

we next analyze changes in the left-hand side of (24). With some simple calculations, we obtain

∂B(q)

∂q
= 2

(1 + (CN − 1)/q)(CS − CN)

(1 + (CS − 1)/q)3q2
, 1−B(q) =

(2 + (CN + CS − 2)/q)(CS − CN)/q

(1 + (CS − 1)/q)2
.

Taking the partial derivative of the left-hand side of (24) with respect to q, we derive

∂B(q)

∂q
t2max +

(
∂B(q)

∂q

CS + 2q − 2

CS

+ (−1 +B(q))
2

CS

)
tmax
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∝ ∂B(q)

∂q

(
tmax +

CS + 2q − 2

CS

)
+ (−1 +B(q))

2

CS

∝ (CS − CN)

[(
1 +

CN − 1

q

)(
tmax +

CS + 2q − 2

CS

)

−
(
2 +

CN + CS − 2

q

)(
1 +

CS − 1

q

)
q

CS

]
=: (CS − CN)D(q). (25)

By (25) and the fact that the quadratic equation f(·) in (16) has a unique positive root and

satisfies f(0) > 0 and f(t) → −∞ as t → ∞, the conclusion is equivalent to the condition of

D(q) < 0 for any q ∈ (0, 1). Observe that D(q) < 0 if and only if

tmax <
(2 + (CN + CS − 2)/q)(1 + (CS − 1)/q)q − (1 + (CN − 1)/q)(CS + 2q − 2)

(1 + (CN − 1)/q)CS

=
(1 + (CS − 1)/q)2q + (1 + (CN − 1)/q)(1− q)

(1 + (CN − 1)/q)CS

=
L̃2
Sq + L̃N(1− q)

L̃N(L̃Sq + 1− q)
=: H(q).

In terms of (24), the preceding inequality is equivalent to

w(q,H(q)) :=
L̃2
N

L̃2
S

(H(q))2 +

(
L̃2
N

L̃2
S

CS + 2q − 2

CS

+
1− 2q

CS

)
H(q)− 1

CS

> 0.

Note that

H(q) +
CS + 2q − 2

CS

=
(1 + (CS − 1)/q)2q + (1 + (CN − 1)/q)(CS + q − 1)

(1 + (CN − 1)/q)CS

=
L̃2
Sq + L̃N L̃Sq

L̃N(L̃Sq + 1− q)
.

Thus,

w(q,H(q)) > 0

⇐⇒ L̃2
N

L̃2
S

L̃2
Sq + L̃N(1− q)

L̃N(L̃Sq + 1− q)

L̃2
Sq + L̃N L̃Sq

L̃N(L̃Sq + 1− q)
+

1− 2q

L̃Sq − q + 1

L̃2
Sq + L̃N(1− q)

L̃N(L̃Sq + 1− q)
− 1

L̃Sq − q + 1
> 0

⇐⇒ (L̃S + L̃N )̃[L̃
2
Sq + L̃N(1− q)]L̃Nq + (1− 2q)[L̃2

Sq + L̃N(1− q)]L̃S − L̃SL̃N(1− q + L̃Sq) > 0

⇐⇒ [(L̃S + L̃N)L̃N − 2L̃S]L̃S(L̃
2
S − L̃N)q

+ (L̃2
S + L̃N L̃S)L̃

2
N + L̃2

S(L̃
2
S − L̃N)− 2L̃N L̃

2
S − L̃N L̃

2
S(L̃S − 1) > 0
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⇐⇒ [(L̃S + L̃N)L̃N − 2L̃S](L̃
2
S − L̃N)q + (L̃S + L̃N)L̃

2
N + L̃3

S − 2L̃N L̃S − L̃N L̃
2
S > 0

⇐⇒ [(L̃N − 2)q + 1]L̃3
S + (L̃2

Nq − L̃N)L̃
2
S + (L̃N − 2)L̃N L̃S(1− q) + L̃3

N(1− q) > 0,

where the last inequality is indeed true. Finally, the other results in this proposition follow

directly from Proposition 3. The proof is completed. □

Proof of Proposition 6

From Equation (11) and the definition of L̃S = 1 + (CS − 1)/q, we have

E[PIb] =

(
1

2
(1− q) +

L̃S

L̃S + 1
q

)
σ2
0

=
(CS + 1)q + CS − 1

2(2q + CS − 1)
σ2
0,

which decreases as q decreases. Thus, the conclusions regarding the monotonicity of E[PIb]

with respect to q follow.

From Equation (14), β∗
m satisfies

L̃S + 1

(L̃S − 1)q + 1

qσ2
0

σ2
0 +

L̃2
Nσ2

ω

L̃2
S(β

∗
m)2

+
2

(L̃S − 1)q + 1

(1− q)σ2
0

σ2
0 +

σ2
ω

(β∗
m)2

= 1,

which can be rewritten as

2 + (CS − 1)/q

2

qσ2
0

σ2
0 +

L̃2
Nσ2

ω

L̃2
S(β

∗
m(q))2

+
(1− q)σ2

0

σ2
0 +

σ2
ω

(β∗
m(q))2

=
CS

2
,

where β∗
m(q) emphasizes the dependence of β∗

m on q. Substituting q with q̂ (where q̂ < q) yields

2 + (CS − 1)/q̂

2

q̂σ2
0

σ2
0 +

L̃2
Nσ2

ω

L̃2
S(β

∗
m(q̂))2

+
(1− q̂)σ2

0

σ2
0 +

σ2
ω

(β∗
m(q̂))2

=
CS

2
.

Furthermore, it follows from (9) that

E[PIm(q)]/σ
2
0 =

(1− q)σ2
0

σ2
0 +

σ2
ω

(β∗
m(q))2

+
qσ2

0

σ2
0 +

L̃2
Nσ2

ω

L̃2
S(β

∗
m(q))2

, (26)

E[PIm(q̂)]/σ
2
0 =

(1− q̂)σ2
0

σ2
0 +

σ2
ω

(β∗
m(q̂))2

+
q̂σ2

0

σ2
0 +

L̃2
Nσ2

ω

L̃2
S(β

∗
m(q̂))2

.
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Using these four equalities, we derive

E[PIm(q̂)]− E[PIm(q)]

∝
(
2 + (CS − 1)/q

2
− 1

)
σ2
0q

σ2
0 +

L̃2
Nσ2

ω

L̃2
S(β

∗
m(q))2

−
(
2 + (CS − 1)/q̂

2
− 1

)
σ2
0 q̂

σ2
0 +

L̃2
Nσ2

ω

L̃2
S(β

∗
m(q̂))2

∝ σ2
0

σ2
0 +

L̃2
Nσ2

ω

L̃2
S(β

∗
m(q))2

− σ2
0

σ2
0 +

L̃2
Nσ2

ω

L̃2
S(β

∗
m(q̂))2

∝ 1

1 +
(

1+(CN−1)/q
1+(CS−1)/q

)2
t(q)

− 1

1 +
(

1+(CN−1)/q̂
1+(CS−1)/q̂

)2
t(q̂)

. (27)

Here t(q) highlights the dependence of t on q.

As shown in the proof of Proposition 5, t(q̂) > t(q) (t(q̂) < t(q)) when CS < CN (CS > CN).

Additionally, observe that 1+(CN−1)/q
1+(CS−1)/q

decreases (increases) with q when CS < CN (CS > CN).

Thus, from (27), we conclude that E[PIm(q̂)] > E[PIm(q)] when CS < CN , E[PIm(q̂)] <

E[PIm(q)] when CS > CN , and E[PIm(q̂)] = E[PIm(q)] when CS = CN . Thus, the conclusions

regarding the monotonicity of E[PIm] with respect to q follow. Finally, the other results in this

proposition follow directly from Proposition 4. The proof is completed. □

Proof of Proposition 7

Part (i). We first show that TVm increases with large LS. From Equation (20), it suffices to

show that ((LS − 1)q + 1)β∗
m increases with large LS. Let ν = σ2

ω

σ2
0((LS−1)q+1)2(β∗

m)2
for notational

convenience. Observe that ν = t
((LS−1)q+1)2

. Then, Equation (16) can be rewritten as

−L2
N((LS − 1)q + 1)3ν2 +

(
L2
N(1− q − LSq) + (2q − 1)L2

S

)
ν +

L2
S

((LS − 1)q + 1)2
= 0. (28)

Taking the partial derivative with respect to LS on both sides of (28) yields[
− 2L2

N((LS − 1)q + 1)3ν +
(
L2
N(1− q − LSq) + (2q − 1)L2

S

) ] ∂ν

∂LS

− 3qL2
N((LS − 1)q + 1)2ν2 +

(
−L2

Nq + 2(2q − 1)LS

)
ν +

2LS(1− q)

((LS − 1)q + 1)3
= 0. (29)

First, it follows from (28) that the coefficient of ∂ν
∂LS

in (29) is negative for any 0 < q < 1.

Second, for 0 < q < 1
2
, Lemma 1 shows that β∗

m →
√

σ2
ω(1−2q)

σ2
0

, and thus ν = O( 1
L2
S
) as LS → ∞.

Consequently, the sum of the last three terms in (29) is dominated by 2(2q − 1)O( 1
LS

), which
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is negative. Therefore, ∂ν
∂LS

is negative for large LS when 0 < q < 1
2
. For 1

2
< q < 1, Lemma 1

shows that
√
LSβ

∗
m → LN

√
q

2q−1
σ2
ω

σ2
0
, and thus νLS → 2q−1

q3L2
N
as LS → ∞. Consequently, the sum

of the last three terms in (29) is dominated by

−3q3L2
N

(
2q − 1

q3L2
N

)2

+ 2(2q − 1)

(
2q − 1

q3L2
N

)
,

which is also negative. Thus, ∂ν
∂LS

< 0 for large LS when 1
2
< q < 1. For q = 1

2
, from (28), we

can show by contradiction that LSν → 0 and L3
Sν

2 → 1
L2
N q5

as LS → ∞. This implies that the

sum of the last three terms in (29) is dominated by −3q2L2
NO( 1

LS
), which is negative. Recalling

that the coefficient of ∂ν
∂LS

in (29) is negative, we conclude that ν decreases and TVm increases

with large LS for any 0 < q < 1.

Next, we show the conclusion regarding expected price informativeness. From (26) and (14),

we have

E[PIm]/σ
2
0 =

(LS − 1)q + 1

LS + 1
+

(
1− 2

LS + 1

)
1− q

1 + t
, (30)

where t = σ2
ω

σ2
0(β

∗
m)2

. Additionally, from (16), we have

−L2
N t

2 +

(
L2
N

1− q − LSq

(LS − 1)q + 1
+

(2q − 1)L2
S

(LS − 1)q + 1

)
t+

L2
S

(LS − 1)q + 1
= 0. (31)

Taking the partial derivative with respect to LS on both sides of (30) yields

∂E[PIm]/σ
2
0

∂LS

=
2q − 1

(LS + 1)2
+

2(1− q)

(LS + 1)2(1 + t)
− LS − 1

LS + 1

1− q

(1 + t)2
∂t

∂LS

. (32)

Taking the partial derivative with respect to LS on both sides of (31) gives(
−2L2

N t+ L2
N

1− q − LSq

(LS − 1)q + 1
+

(2q − 1)L2
S

(LS − 1)q + 1

)
∂t

∂LS

+

(
L2
N

−2q(1− q)

((LS − 1)q + 1)2
+ (2q − 1)

L2
Sq + 2LS(1− q)

((LS − 1)q + 1)2

)
t+

L2
Sq + 2LS(1− q)

((LS − 1)q + 1)2
= 0. (33)

We analyze the following three cases.

Case 1: Suppose 0 < q < 1
2
. By Lemma 1, β∗

m →
√

σ2
ω(1−2q)

σ2
0

, and thus t → 1
1−2q

as LS → ∞.

Consequently, from (31), we have (1 + (2q − 1)t)LS → 2q(1−q)L2
N

(1−2q)2
. It follows from (33) that(

−2L2
N t

(LS − 1)q + 1

L2
S

+ L2
N

1− q − LSq

L2
S

+ 2q − 1

)
L2
S

∂t

∂LS
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+ L2
N t

−2q(1− q)

(LS − 1)q + 1
+ (1 + (2q − 1)t)LS

L2
Sq + 2LS(1− q)

((LS − 1)q + 1)LS

= 0,

and thus as LS → ∞,

(1− 2q)L2
S

∂t

∂LS

→ 2q(1− q)L2
N

(1− 2q)2
.

Combining this with the relation 2q− 1+ 2(1−q)
1+t

→ 0 and (32), we conclude that
∂E[PIm]/σ2

0

∂LS
< 0

for large LS.

Case 2: Suppose 1
2
< q < 1. By Lemma 1,

√
LSβ

∗
m → LN

√
q

2q−1
σ2
ω

σ2
0
, and thus t/LS → 2q−1

qL2
N

as LS → ∞. From (33), we conclude that ∂t
∂LS

→ 2q−1
qL2

N
. From (32), we observe that

∂E[PIm]/σ2
0

∂LS

is dominated by

2q − 1

(LS + 1)2
− LS − 1

LS + 1

1− q

(1 + t)2
∂t

∂LS

= (2q − 1)

(
1− q(1− q)L2

N

(2q − 1)2

)
O
(

1

L2
S

)
,

which is negative if q(1− q)L2
N > (2q − 1)2, or equivalently,

1

2
< q <

1

2

(
1 +

√
L2
N

L2
N + 4

)
,

and positive if q(1− q)L2
N < (2q − 1)2, or equivalently,

1

2

(
1 +

√
L2
N

L2
N + 4

)
< q < 1.

Case 3: Suppose q = 1
2
. In this case, from (31), we have t/

√
LS →

√
2/LN . It then follows

from (33) that t ∂t
∂LS

→ 1/L2
N . Consequently,

∂E[PIm]/σ2
0

∂LS
is dominated by the third term in (32),

which is negative.

Part (ii). By Equations (20) and (30), to show that increasing LN always increases TVm

and E[PIm], it suffices to show that β∗
m increases, or equivalently, t decreases with LN . To this

end, from (31), we have(
−2L2

N t+ L2
N

1− q − LSq

(LS − 1)q + 1
+

(2q − 1)L2
S

(LS − 1)q + 1

)
∂t

∂LN

− 2LN t
2 + 2LN

1− q − LSq

(LS − 1)q + 1
t = 0,

(34)

where the coefficient of ∂t
∂LN

in (34) is negative by (31). Moreover, from (31), we have

2LN t
2 − 2LN

1− q − LSq

(LS − 1)q + 1
t ∝ 1 + (2q − 1)t,
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which is positive when 1
2
≤ q < 1. Additionally, when 0 < q < 1

2
, it holds that f(1/(1−2q)) < 0

(where f(·) is given by (16)), implying t < 1
1−2q

. Thus, 1 + (2q − 1)t > 0, and consequently, it

follows from (34) that ∂t/∂LN < 0 for any 0 < q < 1. As a result, t decreases with LN .

Part (iii). We first show that increasing q increases E[PIm]. From (30), we have

∂E[PIm]/σ
2
0

∂q
=

LS − 1

LS + 1
+

LS − 1

LS + 1

−(1 + t)− (1− q) ∂t
∂q

(1 + t)2

∝ 1− 1

1 + t
− 1− q

(1 + t)2
∂t

∂q

∝ t− 1− q

1 + t

∂t

∂q
. (35)

Moreover, from (31), we obtain

−L2
N((LS − 1)q + 1)t2 +

(
L2
N(1− (LS + 1)q) + (2q − 1)L2

S

)
t+ L2

S = 0. (36)

Taking the partial derivative with respect to q on both sides of (36) yields(
− 2L2

N((LS − 1)q + 1)t+ L2
N(1− (LS + 1)q) + (2q − 1)L2

S

) ∂t
∂q

− L2
N(LS − 1)t2 − L2

N(LS + 1)t+ 2L2
St = 0, (37)

where the coefficient of ∂t
∂q

in (37) is negative by (36). Combining (35) and (37), we obtain

∂E[PIm]/σ
2
0

∂q
∝ t− 1− q

1 + t

−L2
N(LS − 1)t2 − L2

N(LS + 1)t+ 2L2
St

2L2
N((LS − 1)q + 1)t− L2

N(1− (LS + 1)q)− (2q − 1)L2
S

∝ (1 + t)
(
2L2

N((LS − 1)q + 1)t− L2
N(1− (LS + 1)q)− (2q − 1)L2

S

)
+ (1− q)

(
L2
N(LS − 1)t+ L2

N(LS + 1)− 2L2
S

)
= 2L2

N((LS − 1)q + 1)t2 +
(
L2
NLS(2q + 1)− L2

S(2q − 1)
)
t+ L2

NLS − L2
S. (38)

From (36), we have

L2
N((LS − 1)q + 1)t2 =

(
L2
N(1− (LS + 1)q) + (2q − 1)L2

S

)
t+ L2

S.

Substituting this into (38) yields

∂E[PIm]/σ
2
0

∂q
∝ 2

(
L2
N(1− (LS + 1)q) + (2q − 1)L2

S

)
t+ 2L2

S

+
(
L2
NLS(2q + 1)− L2

S(2q − 1)
)
t+ L2

NLS − L2
S
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=
(
(LS + 2(1− q))L2

N + L2
S(2q − 1)

)
t+ L2

NLS + L2
S

= (LS + 2(1− q))L2
N t+ ((2q − 1)t+ 1)L2

S + L2
NLS.

This expression is positive because (2q − 1)t+ 1 > 0, as proven in Part (ii) of this proposition.

We now show the second result in Part (iii). Recall the notation ν = σ2
ω

σ2
0((LS−1)q+1)2(β∗

m)2
.

From (20), we have

TVm =

√
σ2
ω

σ2
0ν

√
2

π
σ2
0 + ((LN − 1)q + 1)

√
2

π
σ2
ω

=

√
2σ2

ω

π

(
1√
ν
+ (LN − 1)q + 1

)
. (39)

As a result,

∂TVm

∂q
=

√
2σ2

ω

π

(
− 1

2ν
3
2

∂ν

∂q
+ LN

)
. (40)

Taking the partial derivative with respect to q on both sides of (28) yields[
− 2L2

N((LS − 1)q + 1)3ν + L2
N(1− q − LSq) + (2q − 1)L2

S

]∂ν
∂q

− 3L2
N((LS − 1)q + 1)2(LS − 1)ν2 +

(
−L2

N(LS + 1) + 2L2
S

)
ν − 2L2

S(LS − 1)

((LS − 1)q + 1)3
= 0. (41)

We analyze the following three cases.

Case 1: Suppose 0 < q < 1
2
. By Lemma 1, β∗

m →
√

σ2
ω(1−2q)

σ2
0

, and thus νL2
S → 1

q2(1−2q)
as

LS → ∞. It then follows from (41) that L2
S
∂ν
∂q

→ − 2(1−3q)
q3(1−2q)2

. Combining this with (40), we find

that for large LS, − 1

2ν
3
2

∂ν
∂q

+ LN is dominated by

1− 3q

(1− 2q)
1
2

LS.

Thus, for large LS,
∂TVm

∂q
is positive when 0 < q < 1

3
, and negative when 1

3
< q < 1

2
.

Case 2: Suppose 1
2
< q < 1. By Lemma 1,

√
LSβ

∗
m → LN

√
q

2q−1
σ2
ω

σ2
0
, and thus νLS → 2q−1

q3L2
N

as LS → ∞. It then follows from (41) that LS
∂ν
∂q

→ 1
q3L2

N

(
−4 + 3

q

)
. Combining this with (40),

we find that for large LS, − 1

2ν
3
2

∂ν
∂q

+ LN is dominated by

q
3
2

√
LS

2(2q − 1)
3
2

(
4− 3

q

)
.
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Thus, for large LS,
∂TVm

∂q
is positive when 3

4
< q < 1, and negative when 1

2
< q < 3

4
.

Case 3: Suppose q = 1
2
. From (31), t/

√
LS →

√
2/LN , and νL

3
2
S →

√
2

LN q2
as LS → ∞. It

then follows from (41) that LS
∂ν
∂q

→ 1
L2
N q3

. Combining this with (40), we find that for large LS,

− 1

2ν
3
2

∂ν
∂q

+ LN is dominated by

− L
5
4
S

2
7
4

√
LN

,

which is negative.

We now show the last result in Part (iii). We analyze the following three cases.

Case 1: Suppose (LS+1)q > 1. It follows from (28) that ν → 0 and L2
Nν → L2

S

((LS−1)q+1)2((LS+1)q−1)
.

Consequently, from (41), we have

L2
N

∂ν

∂q
→

L2
S(LS+1)

((LS−1)q+1)2((LS+1)q−1)
+

2L2
S(LS−1)

((LS−1)q+1)3

1− q − LSq
.

Thus, by (39) and (40),

TVm

LN

→
√

2σ2
ω

π

(
((LS − 1)q + 1)

√
(LS + 1)q − 1

LS

+ q

)
.

As a result, ∂TVm

∂q
is dominated by√

2σ2
ω

π

1

2

((LS − 1)q + 1)3((LS + 1)q − 1)
3
2

L3
S

L2
S(LS+1)

((LS−1)q+1)2((LS+1)q−1)
+

2L2
S(LS−1)

((LS−1)q+1)3

(LS + 1)q − 1
+ 1

LN

=

√
2σ2

ω

π

(
1

2

((LS + 1)q − 1)
1
2

LS

(
(LS + 1)((LS − 1)q + 1)

(LS + 1)q − 1
+ 2(LS − 1)

)
+ 1

)
LN .

Case 2: Suppose (LS + 1)q < 1. From (28), ν → 1−(LS+1)q
((LS−1)q+1)3

as LN → ∞. Thus, by (39),

TVm

LN

→
√

2σ2
ω

π
q.

Case 3: Suppose (LS + 1)q = 1. From (28), L2
Nν

2 → L2
S

((LS−1)q+1)5
. Thus, by (39),

TVm →
√

2σ2
ω

π

(
((LS − 1)q + 1)

5
4

√
LS

√
LN + qLN

)
,

and
TVm

LN

→
√

2σ2
ω

π
q.

Thus, for large LN , TVm increases with q ∈ (0, 1).

The proof is completed. □
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