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ABSTRACT

This paper proposes a new strategy for modeling and solving state-dependent forward guidance policies

(SCFG). We study its transmission channels using a DSGE model with search and matching frictions in which

agents account for the fact that the SCFG is an endogenous regime-switching system. A fully credible SCFG

causes a boom in inflation and output but no rapid exit from the ZLB. Thus, the transmission of its effects is

primarily through the realization of additional ZLB periods more than through changes in expectations. We

next consider the implications of imperfect credibility. In this case of uncertainty, an SCFG is less impactful.

Finally, using counterfactual experiments on the December 2012 FOMC statement, we find that it led to

about 1.5 pp gain in unemployment and 0.5 pp in inflation.
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1. INTRODUCTION

With the advent of the zero lower bound (ZLB), forward guidance (FG) has become increasingly important for

the Fed in recent years. In turn, it has proven effective in significantly reducing the future path of the policy

rate (Swanson (2021)). The literature has extensively studied the time-dependent FG in which the policy

rate is held fixed during a pre-announced time window (calendar-based, Campbell et al. (2012); McKay,

Nakamura and Steinsson (2016)). Another FG approach is a state-contingent policy. A prime example is

the FOMC statement on December 12, 2012: “[…] The Committee decided to keep the target range for

the Federal Funds rate at 0 to 1/4 percent and currently anticipates that this exceptionally low range for

the Federal Funds rate will be appropriate at least as long as the unemployment rate remains above 6-1/2

percent […]”.2

In this paper, we study the effects of state-contingent forward guidance (SCFG), i.e., when a monetary

authority commits to maintain its policy rate until threshold conditions for a macroeconomic variable are

breached. To do so, we add an endogenous monetary regime-switching system to a New-Keynesian model

with nominal rigidities, Taylor rule and frictional unemployment. Wemotivate the use of search and matching

frictions in the labor market to account for a monetary rule based on an unemployment threshold. Not only

do these frictions imply equilibrium unemployment but they also provide an interesting interaction with the

SCFG that has been little studied in the literature.

Other studies of the SCFG using structural models precede ours. Coenen and Warne (2014) show that an

SCFG is not subject to the FG puzzle in a deterministic model. We go further and evaluate the relative

importance of the expectation channel in a stochastic environment. Boneva, Harrison and Waldron (2018)

assume that an SCFG policy is ”one-off” and not anticipated by agents. They show that the SCFG can be

used to provide a temporary stimulus and outperforms the calendar-based FG. In their framework, agents

do not attach a probability to the policy being repeated in the future. We relax this assumption and impose

fully rational expectations. We argue that it is reasonable to believe that a repeat of the SCFG has been

anticipated in the US, given the long absence of leverage on the policy interest rate.3 In our context, we thus

assume that the SCFG is a regime for which the thresholds, i.e., the entry and exit conditions, are perfectly

known to agents (subsequently, we suppose that these conditions can change randomly). By doing so, we

are able to study the triggering aspect of a credible SCFG in both directions, entry and exit, as well as the

potential asymmetries that their changes might cause. To handle this and the macroeconomic uncertainty,

we solve our DSGE with a regime-switching system with a fully nonlinear solution method based on global

approximations (Albertini and Moyen (2020)).45 Comparing to the existing literature on SCFG, our solving

method allows us to isolate how the policy distorts agent’s expectations and thus disentangle two relevant

transmission channels from a credible SCFG.

We highlight a signaling and a realization channel. The first concerns the change in agents’ expectations,

the second the duration of the ZLB. To isolate the signaling channel, we solve the model with and without

the regime of SCFG. In doing so, we can quantify how the SCFG propagates through its effect on agents’

expectations and decision rules. To capture the channel of realization, we solve the model with the SCFG

but compare simulation results when the SCFG is triggered and when it is not. The difference highlights

how the additional ZLB periods represent the monetary stimulus that is not related to expectations. When

2 The December 18, 2013, communication is an update of the December 12, 2012, communication:”[…] will be appropriate to maintain
the current target range for the federal funds rate well past the time that the unemployment rate declines below 6-1/2 percent,
especially if projected inflation continues to run below the Committee’s 2 percent longer-run goal.”

3 And even if this were not the case, today the possibility of an SCFG reoccurrence has a non-zero probability.

4 More about regime-switching and monetary application can be found in Barthélemy and Marxb (2017b); Barthélemy and Marxa
(2019a), Binning and Maih (2017).

5 As such, we bypass the certainty equivalence and thus offer a new approach to other FG studies like in Del Negro, Giannoni and
Patterson (2012); Graeve, Ilbas and Wouters (2014); Coenen and Warne (2014); English, Lopez-Salido and Tetlow (2015).
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both channels are operating in our benchmark economy, we find that committing to a 6.5% unemployment

target leads to a contemporaneous increase in inflation and a decrease in the real interest rate of about 1

and 1.5 percentage points (pp), respectively. This, in turn, stimulates the real economy. We observe that

the signaling channel contributes to this stimulus on impact but that its effects fade quickly. Over horizons,

the realization channel explains most of the effects.

We further examine transmission mechanisms in a robustness analysis by varying several parameters. In

particular, we investigate the importance of labor frictions and threshold conditions. We find that greater

labor frictions increase the contribution of the signaling channel. Second, we highlight the importance of

the unemployment exit threshold in driving the policy. Conversely, the entry threshold is almost irrelevant.

Taking this a step further, we study the impact of uncertainty on the SCFG by introducing stochastic shocks

to its threshold conditions. These shocks probe the consequences of imperfect credibility, in the spirit of

Bodenstein, Hebden and Nunes (2012), Nakata et al. (2019) and Haberis, Harrison and Waldron (2019).

We show that a loss of credibility (certainty) reduces the importance of the signaling channel. Furthermore,

we are able to evaluate how an unanticipated extension of the SCFG generates a stimulus. We find that an

additional quarter of ZLB (in the SCFG regime) corresponds to a half percentage point decrease in future

unemployment. This gives an indication of how much room the monetary authority might have when it

wishes to extend this policy.

Finally, we assess the importance of the FOMC statement outlined above. Our counterfactual experiments

reveal that most of its effects occurred when the 6.5% unemployment rate target was breached.6 From

that date, according to the Taylor rule, the nominal interest rate should have returned to its pre-crisis level

(i.e. highly positive). We follow the retrospective and extend the ZLB periods to the end of 2015 with a

sequence of unexpected shocks to the SCFG threshold conditions. As such, this lengthening leads to gains

of about 1.5 pp in unemployment and 0.5 pp in inflation.

The remainder of the paper is organized as follows. Section 2 describes the model. Section 3 discusses the

simulation exercises. Section 4 concludes.

2. THE MODEL

The model is a standard New Keynesian DSGE model with the addition of search and matching frictions

on the labor market. Perfectly insured consumers can be either employed or unemployed and maximize

their utility in terms of consumption and leisure. The goods market features monopolistic competition and

nominal price rigidities à la Rotemberg (1982). The central element of our model is that monetary policy is

defined according to a regime-switching system embodying the ZLB and the SCFG.

THE LABOR MARKET

At the beginning of period t, a fraction ut of workers are unemployed. Meanwhile, a fraction ρx of employment

relationships are destroyed. Assuming that these newly unemployed immediately start searching for a job,

the number of job seekers changes as a function of:

st = 1− (1− ρx)nt−1, (1)

where nt is the employment rate. Workers and vacancies are then matched according to the following CES

function:7

mt =
(
s−γ
t + v−γ

t

)− 1
γ ≤ min(st, vt), (2)

6 Late 2013 in our model, mid-2014 in reality.

7 The use of a CES matching function ensures that the job finding and filling probabilities remain below 1.
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where vt ≥ 0 is the number of vacancies. We define qt = mt/vt as the probability of filling a vacancy,

ft = mt/st as the job-finding probability, and θt = ft/qt as the labor market tightness. Consistent with the

above assumptions, the law of motion for employment and unemployment is:

nt = (1− ρx)nt−1 +mt, (3)

ut = 1− nt. (4)

HOUSEHOLD

Households are a continuum of workers of total mass 1 and can be either employed or unemployed. They

consume, value leisure time and inelastically supply a unit of working time. They live in a large family

where they pool their resources. These consist of wages, interest on savings and unemployment benefits.

A representative family is assumed to maximize the present value of the following utility:

max
ΩH

t

E0

∞∑
t=0

(
t∏

k=0

βk

)[
c1−σ
t

1− σ
+ `(1− nt)

]
, (5)

where ct is consumption, nt is the total amount of work provided, σ is the intertemporal elasticity of substi-

tution, and ` is the utility derived from leisure. Finally, βt is a discount factor shock. The family chooses a set

of control variables, ΩH
t = {ct, dt, nt}∞t=0, taking the state variables {pt, wt, it, ft}∞t=0, and the initial wealth (d0)

as given. Maximizing its utility is subject to the employment motion (3) and the following budget constraint:

ptct + dt = dt−1(1 + it−1) + wtnt + (1− nt) bpt +Πt + Tt, (6)

in which dt is a one-period bond bearing a nominal interest rate it. Households receive a nominal wage of

wt if working or a fixed unemployment benefit b. They pay lump-sum taxes Tt and collect the profits Πt

originated by their firms. The corresponding first-order conditions of the optimization problem are given

by:

ϕt = λt

(
wR

t − b
)
− `+ Etβt+1(1− ρx)(1− ft+1)ϕt+1, (7)

λt = c−1
t , (8)

λt = (1 + it)Etβt+1λt+1
pt
pt+1

. (9)

where wR
t = wt/pt is the real wage.

FIRMS

Production is divided into a final and an intermediate goods sector. The representative producer of final

goods buys a variety of differentiated intermediate goods at the price of pjt and aggregates them into a final

consumer good sold at the price of pt. Her production function is:

yt =

[∫ 1

0

y
(ε−1)/ε
jt dj

] ε
(ε−1)

. (10)
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The profit maximization of the final goods firm leads to the following demand function and aggregate price

index:

yjt =

(
pjt
pt

)−ε

yt, (11)

pt =

[∫ 1

0

p1−ε
jt dj

] 1
1−ε

. (12)

On the other hand, producers of intermediate goods operate in a context of monopolistic competition, price

rigidities and search frictions. A continuum of j of these producers exploits a linear technology, with labor

as the only input:

yjt = njt. (13)

They set the price of the product varieties pjt at a cost of quadratic price adjustment à la Rotemberg (1982):

Γπ(pjt) =
ψ

2

(
pjt

πpjt−1
− 1

)2

, (14)

where
pjt
pt

is the relative price of the goods, π the steady-state inflation rate and ψ the parameter controlling

price inertia.

Each firm also decides how many vacancies vjt to post; taking the probability of a successful match, qt, as

given, but at the fixed cost κ. Its optimization problem thus consists of choosing a set of control variables,

ΩF
jt = {vjt, pjt, njt}∞t=0, taking the set of variables {pt, wjt, qt}∞t=0 as given. The latter reads:

max
ΩP

t

E0

∞∑
t=0

(
t∏

k=0

βk

)
λt

λ0
Πjt, (15)

where Πjt =

[
pjt
pt
yjt −

wjt

pt
njt − κvjt − ytΓ

π(pjt)

]
,

subject to the production function, the demand for each intermediate good and the evolution of the em-

ployment rate:

njt = (1− ρx)njt−1 + qtvjt. (16)

Firms being symmetric, the optimal choices of vacancies, employment and prices are respectively given by

the standard vacancy posting creation and price setting conditions, with Jt the value of a filled job and πt

the inflation rate,

Jt = κ/qt, (17)

Jt = mct − wR
t + (1− ρx)Etβt+1

λt+1

λt
µt+1, (18)

0 = (1− ε) + εmct − ψ
πt

π

(πt

π
− 1
)

+ Etβt+1
λt+1

λt
ψ
πt+1

π

(πt+1

π
− 1
) yt+1

yt
. (19)

Wage Setting

The real wage is determined by a Nash bargaining process. The surplus from a match is shared between

workers and employers. The problem is as follows:

max
wt

(
ϕt

λt

)1−ξ

µξ
t , (20)
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and the optimal condition is given by:

ξ
ϕt

λt
= (1− ξ)Jt, (21)

with ξ being the firms’ bargaining power. Using the definitions of ϕt in the equation (7) and Jt in (17), the

real wage is determined by:

wR
t = (1− ξ)

(
mct + Etβt+1

λt+1

λt
(1− ρx)κθt+1

)
+ ξ

(
b+

`

λt

)
. (22)

MONETARY AND FISCAL AUTHORITIES

The notional interest rate i∗t is adjusted according to a standard Taylor rule, as follows:8

1 + i∗t =

(
π

β

(πt

π

)ρπ (nt

n

)ρn)
. (23)

The fiscal authority finances the unemployment allowances b(1 − nt) by collecting lump-sum taxes Tt and

issuing domestic bonds dt. The balanced budget satisfies the following relation:

dt + b(1− nt) = (1 + it−1)dt−1 + Tt. (24)

MARKET CLEARING

Goods market clearing implies the following aggregate resource constraint:

yt

[
1− ψ

2

(πt

π
− 1
)2]

= ct + κvt. (25)

STATE-CONTINGENT FORWARD GUIDANCE

The effective interest rate it is subject to a regime-switching system. Let rt = {1, ..., N} be indicators of

the different regimes. In the benchmark model, the economy switches between three specific monetary

regimes: a normal regime (rt = 1), and two ZLB states, without (rt = 2) and with SCFG (rt = 3). In a normal

regime, the notional interest rate i∗t and the effective nominal interest rate it always coincide. Conversely,

as later experienced, a large and positive discount factor shock can induce a ZLB. In this situation, the level

of the notional rate deviates below zero. The economy must then stay in a ZLB regime (rt = 2), as long

as the notional rate reverts to a positive level. The endogenous switching between a ZLB without (rt = 2)

and with SCFG (rt = 3) is determined by further conditions. The economy enters an SCFG regime (rt = 3)

if and only if the unemployment crosses the entry threshold u(rt−1) and the ZLB regime (rt = 2) applied in

the previous period t − 1. Finally, the return to the normal regime (rt = 1) is solely triggered by the exit

unemployment threshold. Accordingly, the regime-switching system is:

rt =


1 if i∗t > 0

2 if i∗t ≤ 0 and ut < u(rt−1)

3 if ut ≥ u(rt−1) and rt−1 > 1.

(26)

8 In general, Taylor rules are expressed using fluctuations in the output gap. In our model, output is equivalent to employment (see
eq.(13)). The two specifications are therefore similar. The implementation of the ZLB and the SCFG is explained below.
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space. An example for the model without the threshold shock is shown in Figure C.8. All simulated points

are displayed in panel (a). Points that belong to a specific regime are shown in panel (b). In panel (c), the

EDS technique is applied. Finally, a set of representative points for the polynomial evaluation is depicted in

the panel (d).

Figure C.8: EDS grid

Grid points are computed on a stochastic simulation of 20000 observations. Simulated points from the stochastic methods are the ones

from the last iteration. Chebyshev polynomials are of order 3. rt = 1, 2, 3 corresponds to the normal regime, the ZLB regime and the

SCFG regime respectively.

NUMERICAL INTEGRATION

We have four expectation functions Φt = {Φ1
t ,Φ

2
t ,Φ

3
t ,Φ

4
t}, each of which requires numerical integration.

We use Gaussian integration techniques. To simplify the notation, we now remove the time index t from

the contemporaneous variable and use x′ to define the state variables of the next period. Consider an

expectation function of the form:

Φ = βEE(xxx′, P (xxx′; Θ(r′)))

where E(.) stands for the expectation function and E the expectation operator. The solution of next period

state variables are obtained using the following law of motion:

xxx′ = Γ(xxx, ε′; Θ(r))
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The expectation function can then be rewritten as:

Φ = β

∫
ε′

E
(
Γ(xxx, ε′; Θ(r)), P (Γ(xxx, ε′; Θ(r));Θ(r′))

)

To solve the numerical integration problem, we use Gauss-Hermite quadratures. It consists in evaluating

the integral at different nodes and summing the evaluations using particular weights. Let eeejh be the h-th

nodes and ωωωj
h the h-th weights of the Gauss-Hermite quadratures with h = 1, ..., H, H being the number of

quadrature nodes and the index j = {β, x} corresponding to the aggregate shocks. The approximation of

the integral reads:

Φ = β

(
1

√
π

)ns H∑
h=1

H∑
h=1

ωωωβ
h ωωωx

h E
(
Γ(xxx,Σ

√
2eeeh; Θ(r)), P (Γ(xxx,Σ

√
2eeeh; Θ(r));Θ(r′))

)

Σ is the variance-covariance matrix of the shocks and eeeh = {eeeβh, eee
x
h} is the set of nodes.

ALGORITHM: GENERALIZED STOCHASTIC SIMULATION ALGORITHMS

Step 1 - Initialization Choose the order of the Chebyshev polynomialDDD. Denote i the i-th iteration. At this

stage, i = 0. Set a convergence criterion b. Initialize the coefficients Θ(1)i,Θ(2)i,Θ(3)i using OLS regression

on a stochastic simulation computed from the solution of a perturbation method.35

Step 2 - Stochastic simulations Compute a stochastic simulation over T=20000 periods using the same

sequence of shocks {εjt}Tt=0 as in Step 1. Given initial conditions for n0, i
∗
0, β0, x0 and r0 = 1 and the policy

functions Θ(r), for t = 1, ...T , compute the control variables and the next period state variables.

Step 3 - Representative points [Maliar and Maliar (2015), section 2.2.2]. Set a criterion εn, for each

regime n = 1, ..., N. Given the time series previously computed, define Xn = {nt−1, βt, xt| rt = n}Tt=0. Let

Pn = {∅} be the empty set. For n = 1, ..., N, do:

a. Select xj ∈ Xn. Compute ∆(xj , x`), j 6= ` to all xj in Xn with the following formula:

∆(xj , x`) =

√√√√ KKK∑
k=1

(PCk
j − PCk

` )
2

where ∆(xj , x`) is the Euclidian distance between the principal components (PC) of Xn normalized to

unit variance.

b. Eliminate from Xn all xj for which ∆(xj , x`) < εi

c. Add xj to Pn and eliminate it from Xn

d. Go back to step a. until Xn = {∅}

Step 4 - Expectation Set the nodes eee and weights ωωω. For each regime, compute the expectation functions

Φt = {Φ1
t , ...,Φ

4
t} using Gauss-Hermite quadratures.

Step 5 - Solve for the control variables Update the coefficients Θ(r) using the Newton algorithm. Given

expectation terms Φt and the initial value for the state variables xxxt, the Newton algorithm solves a system

of two equations ((53) and (54)) for two unknowns (θt and πt).

Step 6 - Estimate coefficients For n = 1, ..., N, regress the estimate of θt and πt on the basis functions to

35 This step is achieved thanks to the Dynare package for Matlab. We consider a perturbation method of order 2 and assume that the
regime is always rt = 1.
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get a new value for the coefficients:

Θ(n)i+1 =

(
BC(Pn)

>BC(Pn)

)−1(
BC(Pn)

>ĉn

)

Step 7 - Convergence Check for the convergence in the policy rules by computing:

bn =
||Θ(n)i+1 −Θ(n)i||

||Θ(n)i||
bi = max(b1, ..., bN )

a. Check if bi < b. If it is the case, stop the algorithm.

b. Otherwise, if bi ≥ b, set i = i+ 1 and go back to Step 2.

c. To achieve a convergence in the algorithm, use a smoothing parameter for the update of the policy

rules:

Θ(n)i+1 = γiΘ(n)i + (1− γi)Θ(n)i+1

where γi depends on the iteration with the following values:

γi =


γ1 if i < imin

γ2 if imin ≤ i < imax

γ3 if i ≥ imax
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