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ABSTRACT 

We contribute to research on mixed-frequency regressions by introducing an innovative Bayesian 

approach. We impose a Normal-inverse Wishart prior by adding a set of auxiliary dummies in estimating 

a Mixed-Frequency VAR. We identify a high frequency shock in a Monte Carlo experiment and in an 

illustrative example with uncertainty shock for the U.S. economy. As the main findings, we document a 

“temporal aggregation bias” when we adopt a common low-frequency model instead of estimating a 

mixed-frequency framework. The bias is amplified in case of a large mismatching between the high-

frequency shock and low-frequency business cycle variables. 

Keywords: Bayesian mixed-frequency VAR, MIDAS, Monte Carlo, uncertainty shocks, macro-financial 

linkages. 

JEL Classification: C32, E44, E52 



1 Introduction

The co-movements between macroeconomic and financial time series have been predomi-

nantly studied using vector autoregressive (VAR) models (Sims 1980). VARs are usually

estimated by relying on a common low-sampling frequency. For instance, the business

cycle fluctuations are investigated considering quarterly or monthly data. As argued

by Ghysels (2016), forecasting and structural shock identification could be potentially

misspecified because we ignore the fact that some data, for example, financial series, are

available at a higher frequency. For this reason, mixed-frequency vector autoregressive

(hereafter MF-VAR) models have become popular in recent years. These tools can pro-

duce more accurate and reliable forecasting and structural analysis, thus avoiding the

issues associated with temporal aggregation (see Marcellino 1999, Foroni, Ghysels and

Marcellino 2013, Foroni and Marcellino 2016, among others). We can consider a simple

example: a financial uncertainty measure, e.g. VIX, observed at a daily frequency and US

business cycle variables (such as inflation and industrial production) published monthly.

How can we identify the VIX shock on macroeconomic variables without ignoring the

different sampling frequencies? Or generalizing, how can we identify the impact of a

high-frequency shock on low-frequency variables?

We contribute to the methodology of MF-VAR estimation introducing a new high-frequency

identification strategy using Bayesian tools. Our approach is inspired by Götz, Hecq and

Smeekes (2016) and Ghysels (2016) that discuss how Bayesian techniques could improve

the estimation of models in case of different data sampling. In detail, we estimate a

MF-VAR using a prior of a Normal-inverse Wishart form that is implemented by adding a

set of auxiliary dummies to the system as discussed by Götz et al. (2016). Unlike Götz et

al. (2016), that focus on Granger causality testing, we use Bayesian shrinkage techniques

to identify high-frequency shocks. A Monte Carlo experiment shows how the proposed

approach is able to recover the impulse responses to a high-frequency shock implied by

the true mixed-frequency Data Generating Process (DGP). We apply this high-frequency

identification framework by estimating a stacked MF-VAR in the spirit of Ghysels (2016),

to illustrate the impact of a high-frequency variable, the financial uncertainty shock proxied

by the VIX, on low-frequency variables that represent the U.S. business cycle. We provide a

shred of new evidence when we identify a high-frequency shock using a novel identification

strategy. In particular, we document a “temporal aggregation bias” induced by relying on

a common low-frequency Bayesian VAR (hereafter CF-VAR).

In both the Monte Carlo experiment and in the illustration, our main findings suggest how

aggregating the high-frequency VIX to the low-frequency could lead to biased responses.
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In particular, in the empirical example, these reactions show more serious recessionary

effects on the business cycle when different sampling frequencies are ignored identifying the

high-frequency (VIX) shock. Our results are robust with regard to different specifications.

While the estimation sample is for data from 1990-2019, we also study the “temporal

aggregation bias”, including the current economic crisis due to the COVID-19 pandemic.

In this case, our findings show fewer recessionary effects when we rely on a mixed-frequency

analysis.

Our methodology can be compared to the recent contribution to adopting Bayesian

techniques in VARs. There are two approaches: state-space representation and stacked

MF-VAR. Among the studies of the state-space representation, Eraker, Chiu, Foerster,

Kim and Seoane (2014) introduce a Gibbs sampler in the Bayesian estimation of a MF-

VAR, assuming that the high-frequency realizations of the low-frequency data are missing.

Meanwhile, Schorfheide and Song (2015) and Schorfheide and Song (2021) employ Bayesian

techniques to estimate a state-space representation introducing a numerical approximation

of the marginal data density of a linear Gaussian MF-VAR.

Among the studies of stacked MF-VAR, Berger, Morley and Wong (2020) and McCracken,

Owyang and Sekhposyan (2021) propose mixed-frequency models for forecasting analysis.

Cimadomo, Giannone, Lenza, Monti and Sokol (2021) provide evidence of using mixed-

frequency BVARs to nowcast and study the propagation of the U.S. economic shocks.

They use three strategies (state-space, blocking, and cube-root BVARs) for identifying a

low-frequency shock (the GDP shock) and a high-frequency shock (the Economic Policy

Uncertainty shock) on both low- and high-frequency variables. In addition, Clements

and Galvão (2021) estimate a stacked MF-VAR using Bayesian techniques to identify a

quarterly series of expectations shocks. Our methodology contributes to the literature of

the shrinkage prior in stacked MF-VAR. As far as we know, our contribution is the first

study that identifies high-frequency shocks by explicitly taking into account the different

nature of the data when setting the prior.

However, MIDAS models are mainly employed to provide forecasting and in particular now-

casting analyses (Kuzin, Marcellino and Schumacher 2011, Foroni and Marcellino 2014, Hu-

ber, Koop, Onorante, Pfarrhofer and Schreiner 2020, Mogliani and Simoni 2021, among

others). Few articles document the use of a mixed-frequency model only to identify an

economic shock. Ferrara and Guérin (2018), Casarin, Foroni, Marcellino and Ravazzolo

(2018), and Bacchiocchi, Bastianin, Missale and Rossi (2020) provide interesting evidence

by adopting a mixed-frequency strategy for the identification of the uncertainty shock.

Ferrara and Guérin (2018) and Bacchiocchi et al. (2020) rely on a frequentist VAR esti-
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mation, while Casarin et al. (2018) propose a Bayesian multi-country Markov-Switching

model.

Our approach is different from the above-mentioned studies in both the methodological

framework and the shock identification strategy. Technically, we impose a Natural conju-

gate prior that is tailored to take into account the mixed-frequency nature of the data (in

the spirit of Ghysels 2016). Then, the use of Bayesian shrinkage allows the researchers to

identify the impact of high-frequency (e.g. daily/weekly) shocks on common low-frequency

variables, thus avoiding the “curse of the dimensionality”. In particular, this approach is

useful and more appropriate to study shock identification in case of a large mismatching

between high and low frequency (for example, between daily and monthly) and when more

endogenous variables are included. Moreover, as the “temporal aggregation bias” concerns,

our findings document positive evidence differently from Ferrara and Guérin (2018). They

argue how the responses of macroeconomic variables to uncertainty shocks are relatively

similar across common-frequency and mixed-frequency frameworks, suggesting how the

“temporal aggregation bias” is not relevant when uncertainty shock is identified. However,

our results and their empirical evidence cannot be compared since in our setting we rely

on Bayesian techniques and the illustrative example considers different data and sample.

In addition, our paper is going in the same direction as Chudik and Georgiadis (2021).

They estimate impulse response functions by proposing a restricted and unrestricted

mixed-frequency distributed-lag (MFDL) estimator when the response variable is observed

at a lower frequency than the shock. Differently from Chudik and Georgiadis (2021),

which use OLS estimation, we rely on a Bayesian approach that is suitable to deal with

a potential parameter proliferation in stacked MF-VAR. This “curse of dimensionality”

is particularly important in case of a large mismatch between low- and high-frequency

variables.

Last but not least, our empirical findings corroborate the macro-finance literature that

discusses how an increase of uncertainty is followed by a contraction in real activity

(Bloom 2009, Caggiano, Castelnuovo and Groshenny 2014, Leduc and Liu 2016, Basu and

Bundick 2017, Alessandri and Mumtaz 2019, among others). In particular, Alessandri,

Gazzani and Vicondoa (2021) identify a high-frequency financial uncertainty shock propos-

ing an alternative approach to MIDAS that relies on a proxy-SVAR model.

Moreover, our evidence, including the observations in 2020, is connected with the current

research about the macroeconomic effects of COVID-19-induced financial uncertainty (see

Baker, Bloom, Davis, Kost, Sammon and Viratyosin 2020, Caggiano, Castelnuovo and

Kima 2020, Leduc and Liu 2020, among others). However, while the aforementioned
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studies rely only on a common frequency estimation, we document empirical evidence

concerning the recent pandemic crisis using a MIDAS model.

The rest of the paper is organized as follows. Section 2 introduces the Bayesian Mixed-

Frequency VAR approach. Section 3 describes a Monte Carlo experiment. Section 4

illustrates an empirical example: data and identification strategy. Section 5 shows the

empirical evidence with robustness checks. Section 6 presents concluding remarks.

2 Bayesian Mixed Frequency VAR Approach

We estimate a stacked Mixed-frequency Vector Autoregressive model (MF-VAR) à la

Ghysels (2016). Let us consider Kh = 1 high-frequency variable (y
(m)
t−i/m) (e.g. observed

daily or weekly) and a vector of Kl variables sampled at a lower frequency (e.g. monthly),

i.e. Xt =
(
x1,t, . . . , xKl,t

)′
, which are observed every m fixed periods. The reduced-form

representation of the MF-VAR can be written as follows:

Zt =

p∑
ℓ=1

AℓZt−ℓ + c+ ut (1)

where Zt = (y
(m)′

t−(m−1)/m, . . . , y
(m)′

t−1/m, y
(m)′

t , X ′
t)

′ is the K-dimensional vector of endogenous

variables, with K = Kl + (Kh×m), which follows a stacked skip-sampled process, c is

a K × 1 vector of intercepts and ut ∼ N (0,Σ) is a K × 1 vector of error terms, with a

variance-covariance matrix (Σ) that is not assumed to be diagonal.1

The model in equation (1) can be estimated via OLS at the cost of obtaining imprecise

estimates of the MF-VAR coefficients in case of a large number of parameters and a

relatively small sample size.2 To deal with a potential parameter proliferation, we estimate

the MF-VAR in equation (1) by adopting Bayesian estimation techniques. In particular, we

build on the work of Götz et al. (2016) that performs Granger causality testing in MF-VAR

using a Bayesian approach. This methodology, which in turn adapts the approach of Sims

and Zha (1998) and Bańbura, Giannone and Reichlin (2010) to data sampled at different

frequencies, consists of imposing a Natural Conjugate prior on the MF-VAR coefficients

1The order of appearance of high- and low-frequency variables in the stacked vector Zt depends on the
empirical strategy (see Ghysels 2016). In our baseline model specification, the high-frequency variable (i.e.
the VIX) is placed before the block of low-frequency variables (e.g. the macroeconomic aggregates) (see
Section 4.2).

2As shown by the study of Foroni, Marcellino and Schumacher (2015), unrestricted lag polynomials in
MIDAS regressions can be estimated via OLS. The authors find that unrestricted regressions perform
better than standard MIDAS models (which are generally estimated through a non-linear least squares
approach, see i.e. Ghysels, Sinko and Valkanov 2007) for small differences in sampling frequencies.
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by augmenting the system in equation (1) with a set of ad-hoc artificial observations.

Following Ghysels (2016) and Götz et al. (2016), the prior distributions of the MF-VAR

coefficients in Aℓ (i.e. a
ℓ
ij, for ℓ = 1, . . . , p), are centered around a restricted MF-VAR(1).

In particular, AR(1) priors tailored for the mixed-frequency nature of the data are imposed

as follows: 

y
(m)
t−(m−1)/m

...

y
(m)
t−1/m

y
(m)
t

Xt


=



0 . . . ρH 0
...

. . .
...

...

0 . . . ρm−1
H 0

0 . . . ρmH 0

0 . . . 0 diag(ρmL )





y
(m)
t−1−(m−1)/m

...

y
(m)
t−1−1/m

y
(m)
t−1

Xt−1


+ vt (2)

where ρ = (ρH , ρL) denotes the prior mean respectively for the high- and low- frequency

variables, with ρL = ρx1 , . . . , ρxKl
. Equivalently, the AR(1) prior for the MF-VAR coeffi-

cients can be set as follows:

E(aℓij) =


ρm+i−j
H if i ≤ m & j = m & ℓ = 1

ρmL if i = j & i > m & ℓ = 1

0 otherwise

(3)

In line with Götz et al. (2016), we specify the uncertainty around the prior means similarly

to the CF-VAR:

V AR(aℓij) =



ϕ
λ2σ2

H

ℓ2σ2
L

if i ≤ m & j > m

ϕ
λ2σ2

L

ℓ2σ2
H

if i > m & j ≤ m

ϕ
λ2σ2

i,L

ℓ2σ2
j,L

if i > m & j > m & i ̸= j

λ2

ℓ2
otherwise

(4)

where λ controls the tightness of the prior distributions around the specifications in

equations (2) and (3), the ratio σi/σj , for i, j = (H,L), accounts for the different scales of

the high- and low-frequency variables and ϕ controls, for each VAR equation, the standard

deviation of the prior on lags associated to the variables different from the dependent

one (e.g. in case of MF-VAR, it controls the influence of low-frequency variables on

the high-frequency ones and vice versa) (see Götz et al. 2016).3 As in CF-VAR models,

3Note that the specifications of the prior means and variances in equations (2)-(4) are tailored to the
case of Kl low-frequency variables and Kh = 1 high-frequency variable. However, these specifications can
be easily modified to handle more than one high-frequency variable.
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Figure 10: Aggregated responses of U.S. business cycle variables to daily financial uncer-
tainty shocks from the baseline MF-VAR(3) estimated over 1990M1-2019M12.
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Notes. Aggregated daily impulse responses (in levels) of consumer price index (CPI), industrial production
index (IP), real personal consumption expenditures (PCE), and effective federal funds rate (FFR) in
percentage points, computed over a 36-month forecast horizon. The size of the shocks occurring in each
of the 20 days is equal to 5σ VIX shocks estimated over the period 1990M1-2019M12. In each chart,
the impulse responses from the MF-VAR are aggregated by averaging out the daily responses. Each
chart shows the median response (red line) with 68% (red shading) and 90% (grey shading) credibility
intervals obtained from the estimation of the baseline MF-VAR(3). The median impulse response from a
common-frequency VAR (blue line with asterisk) and the corresponding 90% credibility intervals (blue
dashed lines) are also reported.
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Figure 12: Responses of U.S. business cycle variables to weekly financial uncertainty shocks
from the baseline MF-VAR estimated over 1990M1-2019M12. Different lags.
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(a) Panel a. Mixed-Frequency VAR and Common-Frequency VAR with 6 lags.
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(b) Panel b. Mixed-Frequency VAR and Common-Frequency VAR with 12 lags.

Notes. Aggregated weekly impulse responses (in levels) of consumer price index (CPI), industrial
production index (IP), real personal consumption expenditures (PCE), and effective federal funds rate
(FFR) in percentage points, computed over a 36-month forecast horizon. The size of the shocks occurring
in each of the 4 weeks is equal to 5σ VIX shocks estimated over the period 1990M1-2019M12. In each chart,
the impulse responses from the MF-VAR are aggregated by averaging out the weekly responses. Each
chart shows the median response (red line) with 68% (red shading) and 90% (grey shading) credibility
intervals obtained from the estimation of MF-VAR(6) (panel a) and MF-VAR(12) (panel b) (see equation
(12)). The median impulse response from a common-frequency VAR (blue line with asterisk) and the
corresponding 90% credibility intervals (blue dashed line) are also reported.

38



Figure 13: Responses of U.S. business cycle variables to weekly financial uncertainty shocks
from a MF-VAR(3) estimated over 1990M1-2019M12. Extended set of variables.
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Notes. Aggregated weekly impulse responses (in levels) of the selected macroeconomic variables in
percentage points, computed over a 36-month forecast horizon. The shocks are identified using a Cholesky
decomposition of the reduced-form residual covariance matrix (see Section 4.2) with variables ordered
as follows: weekly VIX, consumer price index (CPI), industrial production index (IP), real personal
consumption expenditures (PCE), unemployment rate (UNEMP.RATE), effective federal funds rate (FFR),
and 10-year treasury constant maturity rate (10YR-TB). The size of the shocks occurring in each of the 4
weeks is equal to 5σ VIX shocks estimated over the period 1990M1-2019M12. In each chart, the impulse
responses from the MF-VAR are aggregated by averaging out the weekly responses. Each chart shows the
median response (red line) with 68% (red shading) and 90% (grey shading) credibility intervals obtained
from the estimation of a MF-VAR(3). The median impulse response from a common-frequency VAR (blue
line with asterisk) and the corresponding 90% credibility intervals (blue dashed lines) are also reported.
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Figure 14: Responses of U.S. business cycle variables to weekly financial uncertainty shocks
from a MF-VAR(3) estimated over 1990M1-2019M12. Shadow short rate.
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Notes. Aggregated weekly impulse responses (in levels) of the selected macroeconomic variables in
percentage points, computed over a 36-month forecast horizon. The shocks are identified using a Cholesky
decomposition of the reduced-form residual covariance matrix (see Section 4.2) with variables ordered
as follows: weekly VIX, consumer price index (CPI), industrial production index (IP), real personal
consumption expenditures (PCE), unemployment rate (UNEMP.RATE), and shadow short rate (SHADOW
RATE). The size of the shocks occurring in each of the 4 weeks is equal to 5σ VIX shocks estimated over
the period 1990M1-2019M12. In each chart, the impulse responses from the MF-VAR are aggregated
by averaging out the weekly responses. Each chart shows the median response (red line) with 68% (red
shading) and 90% (grey shading) credibility intervals obtained from the estimation of a MF-VAR(3). The
median impulse response from a common-frequency VAR (blue line with asterisk) and the corresponding
90% credibility intervals (blue dashed lines) are also reported.
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Figure 15: Responses of U.S. business cycle variables to weekly financial uncertainty shocks
from a MF-VAR(3) estimated over 1990M1-2019M12. VIX ordered last.
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Notes. Aggregated weekly impulse responses (in levels) of the selected macroeconomic variables in
percentage points, computed over a 36-month forecast horizon. The shocks are identified using a Cholesky
decomposition of the reduced-form residual covariance matrix with variables ordered as follows: consumer
price index (CPI), industrial production index (IP), real personal consumption expenditures (PCE),
effective federal funds rate (FFR), and weekly VIX. The size of the shocks occurring in each of the 4
weeks is equal to 5σ VIX shocks estimated over the period 1990M1-2019M12. In each chart, the impulse
responses from the MF-VAR are aggregated by averaging out the weekly responses. Each chart shows the
median response (red line) with 68% (red shading) and 90% (grey shading) credibility intervals obtained
from the estimation of a MF-VAR(3). The median impulse response from a common-frequency VAR (blue
line with asterisk) and the corresponding 90% credibility intervals (blue dashed lines) are also reported.
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Figure 16: Aggregated responses of U.S. business cycle variables to weekly financial
uncertainty shocks from a MF-VAR(3) estimated over 1990M1-2020M11.
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Notes. Aggregated weekly impulse responses (in levels) of consumer price index (CPI), industrial
production index (IP), real personal consumption expenditures (PCE), and effective federal funds rate
(FFR) in percentage points, computed over a 36-month forecast horizon. The size of the shocks occurring
in each of the 4 weeks is equal to 5σ VIX shocks estimated over the period 1990M1-2020M11. In each chart,
the impulse responses from the MF-VAR are aggregated by averaging out the weekly responses. Each chart
shows the median response (red line) with 68% (red shading) and 90% (grey shading) credibility intervals
obtained from the estimation of the MF-VAR(3) (see equation (12)). The median impulse response from
a common-frequency VAR (blue line with asterisk) and the corresponding 90% credibility intervals (blue
dashed lines) are also reported.
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Figure 17: Responses of U.S. business cycle variables to daily financial uncertainty shocks
from a MF-VAR(3) estimated over 1990M1-2020M11.
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Notes. Median responses (in levels) of consumer price index (CPI), industrial production index (IP),
real personal consumption expenditures (PCE), and effective federal funds rate (FFR) in percentage
points, computed over a 36-month forecast horizon. The impulse responses are obtained by estimating the
baseline MF-VAR(3) using daily series (i.e. 20 observations in each month) of VIX. The size of the shocks
occurring in each of the 20 days is equal to 5σ VIX shocks estimated over the period 1990M1-2020M11.
Each chart displays the daily responses (x-axis), the 36-month forecast horizon (y-axis), and the magnitude
of the responses (z-axis).
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Figure 18: Aggregated responses of U.S. business cycle variables to daily financial uncer-
tainty shocks from a MF-VAR(3) estimated over 1990M1-2020M11.
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Notes. Aggregated daily impulse responses (in levels) of consumer price index (CPI), industrial production
index (IP), real personal consumption expenditures (PCE), and effective federal funds rate (FFR) in
percentage points, computed over a 36-month forecast horizon. The size of the shocks occurring in each
of the 20 days is equal to 5σ VIX shocks estimated over the period 1990M1-2020M11. In each chart,
the impulse responses from the MF-VAR are aggregated by averaging out the daily responses. Each
chart shows the median response (red line) with 68% (red shading) and 90% (grey shading) credibility
intervals obtained from the estimation of the baseline MF-VAR(3). The median impulse response from a
common-frequency VAR (blue line with asterisk) and the corresponding 90% credibility intervals (blue
dashed lines) are also reported.
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Figure A.1: Aggregated median responses of U.S. business cycle variables to weekly
financial uncertainty shocks from a MF-VAR(3) estimated over 1990M1-2019M12. Multi-σ
shocks.
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Notes. Posterior median of the aggregated weekly impulse responses (in levels) of consumer price index
(CPI), industrial production index (IP), real personal consumption expenditures (PCE), and effective
federal funds rate (FFR) in percentage points, computed over a 36-month forecast horizon. The sizes of
the shocks occurring in each of the 4 weeks are calibrated to be 1σ (blue line), 5σ (red line), and 10σ
(black line) VIX shocks estimated over the period 1990M1-2019M12. In each chart, the impulse responses
from the MF-VAR are aggregated by averaging out the weekly responses.
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Figure B.1: 20th order sample autocorrelation for VAR coefficients and residual covariance
matrix from a MF-VAR(3) using weekly VIX.
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Notes. 20th order sample autocorrelation of the retained draws (i.e. 5, 000). The autocorrelation functions
are computed for the 200 MF-VAR parameters (slope coefficients and intercepts) (upper panel) and for
the 64 parameters in the residual covariance matrix (lower panel), obtained from the estimation of the
MF-VAR(3) fitted to weekly VIX and monthly macroeconomic variables (see equations (1) and (5)).
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Figure B.2: 20th order sample autocorrelation for VAR coefficients and residual covariance
matrix from a MF-VAR(3) using daily VIX.
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Notes. 20th order sample autocorrelation of the retained draws (i.e. 5, 000). The autocorrelation functions
are computed for the 1752 MF-VAR parameters (slope coefficients and intercepts) (upper panel) and for
the 576 parameters in the residual covariance matrix (lower panel), obtained from the estimation of the
MF-VAR(3) fitted to daily VIX and monthly macroeconomic variables (see equations (1) and (5)).
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Figure C.1: Aggregated responses of U.S. business cycle variables to weekly financial uncer-
tainty shocks from the baseline MF-VAR(3) estimated over 1990M1-2019M12. Normalized
shocks.
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Notes. Aggregated weekly impulse responses (in levels) of consumer price index (CPI), industrial
production (IP), real personal consumption expenditures (PCE), and effective federal funds rate (FFR)
in percentage points, computed over a 36-month forecast horizon. The size of the shocks occurring in
each of the 4 weeks is normalized to a 3.5-point increase in the VIX. In each chart, the impulse responses
from the MF-VAR are aggregated by averaging out the weekly responses. Each chart shows the median
response (red line) with 68% (red shading) and 90% (grey shading) credibility intervals obtained from the
estimation of the MF-VAR(3) (see equation (12)). The median impulse response from a common-frequency
VAR (blue line with asterisk) and the corresponding 90% credibility intervals (blue dashed line) are also
reported. For comparison with the MF-VAR results, the size of the shock is normalized to a 3.5-point
increase in the aggregated VIX.
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Figure C.2: Aggregated responses of U.S. business cycle variables to daily financial uncer-
tainty shocks from the baseline MF-VAR(3) estimated over 1990M1-2019M12. Normalized
shocks.
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Notes. Aggregated daily impulse responses (in levels) of consumer price index (CPI), industrial production
index (IP), real personal consumption expenditures (PCE), and effective federal funds rate (FFR) in
percentage points, computed over a 36-month forecast horizon. The size of the shocks occurring in each of
the 20 days is normalized to a 3.5-point increase in the VIX. In each chart, the impulse responses from the
MF-VAR are aggregated by averaging out the daily responses. Each chart shows the median response (red
line) with 68% (red shading) and 90% (grey shading) credibility intervals obtained from the estimation
of the baseline MF-VAR(3). The median impulse response from a common-frequency VAR (blue line
with asterisk) and the corresponding 90% credibility intervals (blue dashed lines) are also reported. For
comparison with the MF-VAR results, the size of the shock is normalized to a 3.5-point increase in the
aggregated VIX.
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