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ABSTRACT 

In this study, we re-visit the factor analytical (FA) approach for (near unit root) dynamic panel data 

models, whose asymptotic distribution has been shown to be normal and well centered at zero without 

the need for valid instruments or correction for bias. It is therefore very appealing. The question is: Does 

the appeal of FA, which so far has only been documented for fixed effects panels, extends to panels with 

incidental trends? This is an important question, because many persistent variables are trending. The 

answer turns out to be negative. In particular, while consistent, the asymptotic normality of FA breaks 

down when there is an exact unit root present, which limits its applicability. 

Keywords: Dynamic panel data models, Unit root, Factor analytical method

JEL codes: C12, C13, C33



1 Introduction

In this paper, we consider the following panel data model, which is the kernel of most mod-

els in the dynamic panel data literature (see Baltagi, 2008):

yi,t = λ′iDt + zi,t, (1.1)

zi,t = ρzi,t−1 + ε i,t, (1.2)

where i = 1, ..., N and t = 1, ..., T index the cross-sectional units and time periods, re-

spectively, z1,0 = ... = zN,0 = 0, ε i,t is an error term, Dt is vector of deterministic trend

terms, and λi is a conformable vector of coefficients. We assume that ε i,t is independent

and identically distributed across both i and t with E(ε i,t) = 0 and E(ε2
i,t) = σ2 > 0, and

that Sλ = N−1 ∑N
i=1 λiλ

′
i → Σλ as N → ∞, where Σλ is positive definite. These conditions

are restrictive but they can be relaxed along the lines of Bai (2013), and Norkutė and West-

erlund (2021) to accommodate, for example, non-zero initial values, exogenous regressors,

heteroskedasticity and weak serial correlation in ε i,t.1 The autoregressive parameter, ρ, is

assumed to be “local-to-unity” in the following sense:

ρ = exp(cN−ηT−γ) = 1 + cαT−1 + O(α2T−2) (1.3)

where c ∈ R is a local-to-unity parameter, α = α(N, T) = N−ηT1−γ with limN,T→∞ α = α0 ∈

[0, ∞), and η ≥ 0 and γ ≥ 0 determine the rate at which ρ → 1. This formulation is very

flexible and includes most previously considered local specifications as special cases, such

as the usual time series setup with η = 0 and γ = 1, and the common fixed effects panel data

specification with η = 1/2 and γ = 1 (see Westerlund and Larsson, 2015, for a discussion).

1The restrictive conditions are there to ensure a manageable asymptotic analysis, and are not necessary in
practice, provided that the FA estimator is suitably modified. The zero initial value condition is particularly sim-
ple to relax, as the FA estimator is actually asymptotically invariant to the values taken by z1,0, ..., , zN,0, provided
that they are Op(1). Cross-section heteroskedasticity can also be accommodated without change, provided that
N−1 ∑N

i=1 E(ε2
i,t) has a limit such as σ2. For discussions of how to accommodate exogenous regressors, time

heteroskedasticity and weak serial correlation in εi,t, we make reference to Norkutė and Westerlund (2021).
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The estimation of ρ has attracted a considerable attention in the literature. One of the

main reasons for this is the problems caused by the presence of the incidental parameters in

λ1, ..., λN . The standard approach is to de-trend the data prior to estimation. However, this

makes the lagged dependent variable correlated with the error term, which in turn compli-

cates estimation and inference. This is true not only in the classical dynamic panel data setup

with T fixed, but also in the type of large N and T panels considered here. The main con-

cern is that the asymptotic distributions of many known estimators, such as the least squares

(LS) estimator, are not correctly centered at zero, which invalidates inference. Generalized

method of moments (GMM) estimators are an alternative, but they tend to suffer from weak

instrumentation problems when ρ → 1 (see Roodman, 2009). Another alternative is to use

bias-corrected estimators, such as the bias-corrected LS estimator of Hahn and Kuersteiner

(2002). However, the appropriate correction depends not only on the elements of Dt, but

potentially also on unknown nuisance parameters (see Moon and Phillips, 2000). Moreover,

performance can be very sensitive to the way the correction is carried out, so much so that

some researchers have cautioned against its use (see Moon and Perron, 2004).

The FA estimator of Bai (2013) does not require estimation of λ1, ..., λN but only es-

timation of Sλ, which is a finite-dimensional object. As a result, the estimator attains a

normal asymptotic distribution that is correctly centered at zero despite being completely

instrument- and correction-free. This makes it very attractive from both theoretical and em-

pirical points of view. Bai (2013) considers the case when |ρ| < 1, but Norkutė and Wester-

lund (2021) have shown that the attractiveness of FA applies also under (1.3). One implica-

tion of this is that FA can be used for unit root testing, and Norkutė and Westerlund (2021)

have shown that it is possible to construct FA-based unit root tests with maximal achievable

power.

As with the bulk of the existing literature, Bai (2013), and Norkutė and Westerlund (2021)

focus on the case when Dt = 1. Of course, for many economic time series, a constant and

linear trend, rather than just a constant, is likely to be the appropriate deterministic specifi-

cation. This is certainly true for variables such as GDP, industrial production, money supply

and consumer or commodity prices, where trending behavior is evident. The present pa-

per is motivated by this observation. The purpose is to study the properties of FA when

Dt = (1, t)′. The main finding is that while when c 6= 0 the asymptotic distribution of FA

is normal and well centered at zero, when c = 0 the Hessian of the FA objective function is
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zero asymptotically, and therefore asymptotic normality breaks down. The estimator is still

consistent, but the zero Hessian means that it is not suitable for unit root testing, and that

it is likely to be subject to numerical optimization problems. The introduction of the trend

therefore removes much of the appeal of FA.

2 The FA estimator

Let us write (1.1) and (1.2) as

yi,t = di,t + ρyi,t−1 + ε i,t, (2.1)

where di,t = λ′i(Dt − ρDt−1) for t ≥ 2 and di,t = λ′iDt for t = 1. This equation can be written

on stacked vector notation;

yi = di + ρJyi + ε i, (2.2)

where yi = [yi,1, ..., yi,T]
′, di = [di,1, ..., di,T]

′ = (IT − ρJ)Dλi and ε i = [ε i,1, ..., ε i,T]
′ are T × 1,

D = [D1, ..., DT]
′ is T× 2 and J is the T× T lag matrix with ones just below the main diagonal

and zeros elsewhere. The above equation can be solved for yi, giving

yi = Γ(ρ)di + Γ(ρ)ε i, (2.3)

where Γ(ρ) = (IT − ρJ)−1 = IT + ρL(ρ) and

L(ρ) =


0 0 0 . . . 0
1 0 0 . . . 0
ρ 1 0 . . . 0
...

. . . . . . . . .
...

ρT−2 . . . ρ 1 0

 . (2.4)

While in the supplemental material, we treat σ2 as unknown, for simplicity here we fol-

low Moon and Phillips (1999), and treat it as known. The vector of parameters of interest is

therefore given by θ = [(vech Sλ)
′, ρ]′ = (θ′1, θ′2)

′, where θ1 = vech Sλ, θ2 = ρ, and vech is

the half-vec operator. The purpose of FA is to make inference regarding this vector. This is

done by considering the following “discrepancy” function (see Bai, 2013, for a discussion):

Q(θ) = log(|Σ(θ)|) + tr [SyΣ(θ)−1], (2.5)

where |A| and tr A are the determinant and trace, respectively, of A, Sy = N−1 ∑N
i=1 yiy′i,

Σ(θ) = σ2Γ(ρ)Λ(Sλ, σ2)Γ(ρ)′ and Λ(Sλ, θ2) = IT + Γ(ρ)−1DSλD′Γ(ρ)−1′. The objective func-

tion is given by `(θ) = −NQ(θ)/2. Let Q∗(ρ) = maxSλ
Q(θ). In the supplement, we show
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that the maximizer with respect to Sλ is given by

Ŝλ(ρ) = [Γ(ρ)−1D]−(G(ρ)− σ2 IT)[Γ(ρ)−1D]−′, (2.6)

where A− = (A′A)−1A′ for any full row rank matrix A and G(ρ) = Γ(ρ)−1SyΓ(ρ)−1′. Let

Λ̂(ρ) = IT + σ−2Γ(ρ)−1DŜλ(ρ)D′Γ(ρ)−1′. Concentration and simplification lead to

Q∗(ρ) = T log(σ2) + log(|Λ̂(ρ)|) + σ−2tr [G(ρ)Λ̂(ρ)−1], (2.7)

with

`∗(ρ) = −N
2

Q∗(ρ) (2.8)

being the concentrated version of `(θ). The objective is to maximize `∗(ρ) with respect to

ρ. Let us therefore denote the true value of c by c0. The true value of ρ is given by ρ0 =

exp(c0N−ηT−γ). The FA estimator ρ̂ of ρ0 is defined as

ρ̂ = arg max
ρ∈R

`∗(ρ). (2.9)

3 Results

We start by considering the issue of consistency. In the supplement, we show that

Q∗(ρ) = q(c) + o(1), (3.1)

where q(c) is a continuous function whose exact definition is extremely lengthy and is there-

fore relegated to the supplement. The o(1) remainder is uniform in c. The fact that q(c) is

written as a function of c (and not of ρ) involves no loss of generality, because asymptotically

q(c) is minimized at ĉ = NηTγ(ρ̂− 1) (see Moon and Phillips, 2004). However, it simplifies

the analysis, because unlike ρ0, c0 is a fixed parameter that does not tend to zero. Note in

particular that since c0 is an interior point and since q(c) is differentiable, if c0 minimizes

q(c), it must be that dq(c0)/dc = 0 (see Moon and Phillips, 1999, page 723). We therefore

proceed to differentiate q(c).

Lemma 1.

d
dc

q(c) = − 1
h1(c)2 [(c0 − c)α2q2 + (c0 − c)2α3q3 + (c0 − c)3α4q4

+ (c0 − c)4α5q5 + (c0 − c)5α6q6],
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where h1(c), q2, q3, q4, q5 and q6 are given in the supplement.

The roots of dq(ĉ)/dc = 0 can be obtained by using numerical methods, such as Euler’s

method. In this paper, however, we follow Moon and Phillips (2004), and use Mathematica

10.1’s command Solve, which has the advantage that the roots can be obtained analytically.

What we find is that only three out of the five roots are real. We therefore focus on these, as

ρ0 ∈ R.

Figure 1: dq(c)/dc for different values of c0 and c when α = 1.
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Note: The horizontal axis represents values of c. The black (solid), pink (long dash-dotted), blue
(dash-dotted), red (dashed), yellow (long dashed) and green (dotted) lines are for c0 equal to 0, 2,
−2, −4, −6 and −8, respectively.

Figure 1 plots dq(c)/dc for different values of c0 and c when α = 1; later on we comment

on how the results are affected when varying α. The first two roots are given by c = 0 and

c = c0. The third root involves some serious complexity of expression and is therefore not

reported here. Figure 1 suggests that it lies somewhere in the interval [0.5, 1]. However,

the global minimizer is always given by c = c0, which implies that ĉ is consistent, and

therefore so is ρ̂ (see Section 4 in Moon and Phillips, 2004, for a similar argument). Theorem

1 formalizes this.
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Theorem 1. As N, T → ∞,

ρ̂→p ρ0.

The fact that ĉ is consistent when there is a linear trend present stands in sharp contrast to

previous results. Moon and Phillips (1999) show that the maximum likelihood estimator of

c0 is inconsistent, and that this is due to the fact that the score of the log-likelihood function

has a nonzero mean in the limit. The normal equation of the pooled LS estimator of c0 based

on the detrended data is also biased (Moon and Phillips, 2000). In fact, the GMM estimator

of Moon and Phillips (2004) is the only other estimator known to us that allows consistent

estimation of c0 under a linear trend.

Figure 2: q(c) for different values of c0 and c when α = 1.
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Note: See the explanation of Figure 1.

Of course, consistency does not mean that the FA estimator is free of complications. To

see this, Figure 2 plots q(c) for both Dt = 1 and Dt = (1, t)′. Unlike when Dt = 1, we see

that when Dt = (1, t)′ the global minimum at c = c0 gets closer to the local maximum at

c = 0 as c0 approaches zero. The reason is that under a linear trend q(c) is not globally but

only locally convex around the global minimum c0, and the convexity of q(c) around c0 is

decreasing in c0. This means that the estimation is likely to be more difficult the closer c0 is to
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zero. Figure 2 illustrates this point for α = 1; however, the same is true also for α 6= 1, as we

illustrate in the supplement. The main conclusion from varying α is just as expected given

the effect of c0 reported in Figures 1 and 2, and how c0 and α enter (1.3) multiplicatively; that

is, the global minimum is easier (harder) to discern the larger (smaller) is α, as the convexity

of q(c) around c0 is increasing in α.

The above mentioned difficulty in finding the global minimum is reflected in the asymp-

totic distribution of ρ̂. Theorem 2 and Corollary 1 report this asymptotic distribution for

α0 > 0 and α0 = 0, respectively. Both results assume that c0 6= 0; however, we also discuss

the case when c0 = 0.

Theorem 2. Suppose that α0 > 0 and c0 6= 0. Then, as N, T → ∞,

√
NT(ρ̂− ρ0)→d N

(
0, lim

N,T→∞

1
s2(ρ0)

)
,

where

s2(ρ0) = −
1

NT2
d2`∗(ρ0)

(dρ)2 =
α2

0c2
0

45
+ O(α3

0c3
0).

According to Theorem 2, there is no asymptotic bias despite the linear trend and local-to-

unity specification of ρ. This is important, because, as alluded to in Section 1, most existing

estimators of ρ0 are biased in ways that depend on the fitted deterministic specification.

Valid inference in these cases therefore requires bias correction, which can sometimes be

detrimental for performance (see Moon and Perron, 2004).

A major problem revealed by Theorem 2 is that

lim
N,T→∞

s2(1) = 0. (3.2)

Hence, since the Hessian is zero, its inverse, which is identically the asymptotic variance

of ρ̂, is undefined when c0 = 0 and/or α0 = 0, and therefore ρ0 is first-order unidentified

(see Moon and Phillips, 2004). This is partly expected given Figure 1, which shows that

dq(c)/dc is flat in a neighborhood around c0 = 0. Hence, while optimal in the constant only

case (see Section 1), with a trend included FA is not really suitable for unit root testing, as

c0 = 0 under the null hypothesis. Higher-order identification might be possible, but even

if it is the results of Moon and Phillips (2004) suggest that the rate of convergence is not

likely to be larger than N1/6T and the asymptotic distribution may be non-standard, and

our preliminary Monte Carlo results support this. We therefore do not pursue this avenue
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any further, but rather we caution against the use of FA as a basis for constructing unit root

tests when there is a linear trend present.

Because the rate of shrinking of the local specification in (1.3) is decreasing in α, we

might expect α0 = 0 to lead to relatively low rate of convergence when compared to α0 > 0.

Corollary 1 confirms this.

Corollary 1. Suppose that α0 = 0 and c0 6= 0. Then, as N, T → ∞ with max{N−1/2, T−1/2}/α→

0,

α
√

NT(ρ̂− ρ0)→d N
(

0,
45
c2

0

)
.

The case considered in Corollary 1 with α0 = 0 and c0 6= 0 is important, as it is consistent

with most local alternatives considered in the unit root testing literature. In the trend case

considered here, the power envelope is defined within N−1/4T−1-neighborhoods of the unit

root null hypothesis (Moon et al., 2007), which in our notation is tantamount to setting γ = 1

and η = 1/4, such that α = N−1/4 and therefore the rate of convergence of ρ̂ is given

by α
√

NT = N1/4T.2 Hence, provided that c0 6= 0, the FA estimator operates within the

optimal shrinking neighborhood.

An important implication of the results reported so far for empirical work is that while ρ̂

is consistent, implementation may be difficult as conventional gradient-based optimization

methods are likely to fail if c0 is close to zero. In order to illustrate this point, in Table 1 we

report the bias and root mean squared error (RMSE) of ρ̂ when γ = 1, η = 1/4, ε i,t ∼ N(0, 1)

and the elements of λi are drawn independently from U(0, 1). The optimization was carried

out using the BFGS algorithm with the true parameters as starting values, which performed

very similarly to Newton–Raphson. The number of replications is 1,000. As expected given

Theorem 1, we see that both the bias and RMSE are decreasing in N and T. The fact that the

decrease is faster in T than in N is consistent with the rate of convergence given in Theorem

2.

As in Hsiao et al. (2002), the results reported in Table 1 are based on the replications

in which FA could be computed. In order to get a feeling for the numerical performance

of FA, in Table 2 we report the number of replications with either complete break-down

2The expansion of the score used to derive the asymptotic distribution in Theorem 2 is accurate up to an
Op(max{N−1/2, T−1/2}) remainder. The Corollary 1 requirement that max{N−1/2, T−1/2}/α → 0 is there to
ensure that this remainder remains negligible even when the score is scaled by α. Note in particular how N1/4T-
consistency requires N1/4T−1/2 → 0, which is in agreement with the results reported by Moon et al. (2007).
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or non-invertible Hessian. As expected, we see that the numbers increase as c0 becomes

closer to zero. The fact that the Hessian can be non-positive definite means that the FA-

based t-statistic can sometimes take on complex numbers, which in turn makes it difficult

to evaluate its size. The results do get better as c0 moves away from zero, but then these

are not very interesting since in practice c0 = 0 is main hypothesis of interest.3 The results

reported in Tables 1 and 2 are for the case when the starting values set equal to the true

parameters, and, as expected, the performance is even worse if FA is initialized at the LS

estimates. Hence, not only is FA likely to be difficult to implement in practice, but it can also

be quite uninformative.

Table 1: Bias and RMSE.

c0 = 0 c0 = −2 c0 = −4 c0 = −6
N T Bias RMSE Bias RMSE Bias RMSE Bias RMSE

50 50 −0.0023 0.0179 −0.0018 0.0194 0.0008 0.0196 −0.0038 0.2683
100 50 −0.0012 0.0144 −0.0007 0.0150 0.0015 0.0153 0.0007 0.0133
200 50 −0.0010 0.0121 −0.0006 0.0119 0.0013 0.0119 0.0005 0.0098
50 100 −0.0010 0.0092 −0.0001 0.0100 0.0009 0.0100 0.0004 0.0089

100 100 −0.0007 0.0074 −0.0001 0.0079 0.0010 0.0081 0.0004 0.0067
200 100 −0.0005 0.0064 −0.0002 0.0062 0.0009 0.0064 0.0003 0.0052

50 200 −0.0007 0.0047 −0.0002 0.0049 0.0005 0.0050 0.0001 0.0044
100 200 −0.0004 0.0039 0.0000 0.0040 0.0004 0.0039 0.0001 0.0033
200 200 −0.0002 0.0033 0.0001 0.0033 0.0004 0.0033 0.0001 0.0026

Notes: c0 is such that ρ0 = 1 + c0N−1/4T−1.

3We have computed rejection rates based on the Monte Carlo iterations that “worked”, and they are close
to 5%, provided that c0 is sufficiently far away from zero. Instead of the inverse Hessian, one may use the
following analytical plug-in variance estimator: s2(ρ̂) = T−2tr [(L(ρ̂)′ + L(ρ̂))MΓ(ρ̂)−1D L(ρ̂)MΓ(ρ̂)−1D], where
MA = I − A(A′A)−1 A′ for any matrix A. This alternative estimator is better behaved than the inverse Hessian
in the sense that it is typically positive. However, because asymptotic normality breaks down when c0 = 0, the
better behaviour only matters when c0 is far away from zero. Hence, regardless of the variance estimator used,
the FA-based t-test is not very useful, because the main hypothesis of interest is again given by c0 = 0.
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Table 2: Numerical diagnostics.

c0 = 0 c0 = −2 c0 = −4 c0 = −6
N T Hess Break Hess Break Hess Break Hess Break

50 50 3.9% 0.8% 3.1% 0.1% 2.4% 0.0% 0.4% 0.0%
100 50 7.3% 0.3% 6.6% 0.1% 3.6% 0.0% 1.3% 0.0%
200 50 9.8% 0.1% 11.6% 0.0% 9.5% 0.0% 1.8% 0.0%

50 100 3.4% 0.5% 2.5% 0.0% 1.3% 0.0% 0.2% 0.0%
100 100 6.9% 0.1% 5.9% 0.0% 4.0% 0.0% 0.4% 0.0%
200 100 10.8% 0.1% 11.8% 0.1% 7.2% 0.0% 1.6% 0.0%

50 200 4.1% 0.2% 3.5% 0.0% 2.6% 0.0% 0.4% 0.0%
100 200 7.3% 0.4% 5.2% 0.1% 3.5% 0.0% 0.4% 0.0%
200 200 10.5% 0.1% 9.2% 0.0% 7.8% 0.0% 0.9% 0.0%

Note: “Hess” and “Break” refer to the fraction of 1000 replications in which the Hessian is non-positive
definite, and the number of break-downs, respectively. c0 is such that ρ0 = 1 + c0N−1/4T−1.

4 Conclusion

In this paper, the FA estimator of Bai (2013), originally proposed for stationary dynamic

panels with fixed effects, is applied to near unit root panel data with a linear trend. What

we find is that while the estimator is consistent and asymptotically normal, the rate of con-

sistency depends on the closeness to the unit root, and asymptotic normality breaks down

when c0 = 0, which is a problem because a unit root is also the main hypothesis of interest.

The break-down is likely to affect both the implementation and performance of FA not only

when c0 is at zero, but when it is “close” to zero, and our Monte Carlo results confirm this.

For these reasons, we caution against the use of FA when there is a trend present.
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Abstract

This supplement we (i) summarize the assumptions used in the main paper, (ii) study the

effect of α on the roots of q(c), (iii) provide the derivation of the concentrated objective

function, and (iv) provide all the proofs that were omitted from the main paper.

A Assumptions

The following assumptions generalize those used in the main paper to the case when σ2 (and

its true value σ2
0 ) is unknown.

Assumption 1. ε i,t is independent and identically distributed (iid) across both i and t with

E(ε i,t) = 0, E(ε2
i,t) = σ2 ∈ S, S = [σ2, σ2] ⊂ R++, 0 < σ2 < σ2 < ∞ and σ−4E(ε4

i,t) = κ < ∞,

where R is the set of real numbers.

Assumption 2. c ∈ C, where C = [c, c] ⊂ R and −∞ < c < c < ∞.

Assumption 3. α = α(N, T) = N−ηT1−γ → α0 ∈ A = [0, ∞) as N, T → ∞.

Assumption 4. Sλ = N−1 ∑N
i=1 λiλ

′
i → Σλ as N → ∞, where Σλ is positive definite.

Assumption 5. θ0
2 lies in the interior of Θ2 = R× S.

Assumptions 1–4 are the same as in the main paper. Assumption 5 is necessary once σ2

is included in the analysis.
∗Corresponding author: Department of Economics, Lund University, Box 7082, 220 07 Lund, Sweden. E-mail:

ovidijus.stauskas@nek.lu.se.

1



B The effect of α on the roots of q(c)

Figure B.1 plots q(c) for different values of c0 and α. Here the horizontal axis measures

the values of c. As in the main text, the black (solid), blue (dash-dotted), red (dashed),

yellow (long dashed) and green (dotted) lines represents c0 equal to 0, −2, −4, −6 and −8,

respectively. The parameter α serves a similar purpose as c0 regulating the closeness to the

unit root (c0 = 0). In particular, we see that for any c0, as α increases (decreases), q(c) gains

(looses) curvature and becomes more convex. For large values of α, q(c) becomes close to a

globally convex function. We also see that as α increases the local maximum at c = 0 gets

closer to the local minimum at the third root. However, as long as c0 sufficiently far away

from zero, this is not problematic, because with an increase in α the global minimum at c0

becomes easier to distinguish from the local stationary points due to convexity. Therefore,

optimization of q(c) is easier and the overall performance of FA in the trend case is better

the larger is α.

When c0 is “close” to zero, the global minimum at c0 and the local maximum at c = 0 are

close. Moreover, the local minimum at the third root is close to c0 and therefore q(c) flattens

out around c0 as can be seen from (a)–(f) in Figure B.1.
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Figure B.1: q(c) for different real values of c0 and c when α ∈ {0.5, 1, 2, 5, 10, 15}.

(a) α = 0.5 (b) α = 1

(c) α = 2 (d) α = 5

(e) α = 10 (f) α = 15

Note: The horizontal axis represents values of c. The black (solid), blue (dash-dotted), red (dashed),
yellow (long dashed) and green (dotted) lines are for c0 equal to 0, −2, −4, −6 and −8, respectively.

3



The problem when c0 is close to zero remains irrespective of the value of α. Figure B.2

below depicts dq(c)/dc for different values of c and α when c0 = 0. As can be seen from

(a)–(d), the values where dq(c)/dc = 0 cluster very closely around c0 = 0. Of course, under

c0 6= 0, the roots cluster for large values of α as well, because the graph becomes narrow.

However, the global minimum is always distinct from the local stationary points. Overall,

while the third root depends on α, it is not detrimental to the performance of FA as long as

c0 sufficiently far away from zero.

Figure B.2: dq(c)/dc for c0 = 0 and α ∈ {1, 5, 10, 15}.

(a) α = 1 (b) α = 5

(c) α = 10 (d) α = 15
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C Derivation of `∗

The derivations contained in this section and the next build heavily on Abadir and Magnus

(2005). All the arguments used can be found in this book. As a matter of notation, A and B

will be used to generic functions of x, with a and b denoting generic constants. We define the

matrix derivative operator Dx, which is such that if the matrix function F = F(x) is m× p

and x is n× q, then Dx F = ∂vec F/∂(vec x)′ is mp× nq. Hence, denoting by dx the matrix

differential, then dx vec F = Fdx vec x, or Dx F = dx vec F/dx vec x.

The derivation of the stated expression for `∗(θ) starts by noting that

`∗(θ) = −N
2

Q∗(θ2), (C.1)

where θ2 = (σ2, ρ)′ and Q∗(θ2) = maxSλ
Q(θ). Therefore, we derive Q∗(θ2). Given that

Q(θ) = log(|Σ(θ)|) + tr(SyΣ−1(θ)), we start from the first term. In particular,

log(|Σ(θ)|) = log(|σ2Γ(ρ)Λ(Sλ, σ2)Γ(ρ)′|)

= log((σ2)T|Γ(ρ)|2 × |Λ(Sλ, σ2)|) = T log(σ2) + log(|Λ(Sλ, σ2)|), (C.2)

where the last equality follows from the fact that |Γ(ρ)| = |Γ(ρ)′| = 1 and |aA| = an|A| for

any A ∈ Rn×n. Moving on to the second term,

tr(SyΣ(θ)−1) = tr(Sy[σ
2Γ(ρ)Λ(Sλ, σ2)Γ(ρ)′]−1)

= tr(σ−2SyΓ(ρ)−1′Λ(Sλ, σ2)−1Γ(ρ)−1) = σ−2tr(Γ(ρ)−1SyΓ(ρ)−1′Λ(Sλ, σ2)−1)

= σ−2tr(G(ρ)Λ(Sλ, σ2)−1), (C.3)

which allows us to obtain

Q(θ) = T log(σ2) + log(|Λ(Sλ, σ2)|) + σ−2tr(G(ρ)Λ(Sλ, σ2)−1). (C.4)

Now, we will take the matrix derivative with respect to Sλ and we start from DSλ
Λ(Sλ, σ2).

Specifically,

DSλ
Λ(Sλ, σ2) = DSλ

(IT + σ−2Γ(ρ)−1DSλD′Γ(ρ)−1′)

= σ−2DSλ
(Γ(ρ)−1DSλD′Γ(ρ)−1′) = σ−2(Γ(ρ)−1D⊗ Γ(ρ)−1D), (C.5)

which directly follows from the fact that vec(Γ(ρ)−1DSλD′Γ(ρ)−1′) = (Γ(ρ)−1D⊗Γ(ρ)−1D)vec Sλ

using vec (ABC) = (C′⊗ A)vec B and the properties of matrix derivative operator. Now, us-
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ing Dx log(|A(x)|) = [vec (A(x)−1′)]′Dx A(x), we obtain

DSλ
log(|Λ(Sλ, σ2)|) = [vec (Λ(Sλ, σ2)−1′)]′DSλ

Λ(Sλ, σ2)

= σ−2[vec (Λ(Sλ, σ2)−1′)]′(Γ(ρ)−1D⊗ Γ(ρ)−1D). (C.6)

Next, we differentiate tr(G(ρ)Λ(Sλ, σ2)−1). From Dxtr(AB(x)−1) = −[vec (B(x)−1AB(x)−1)′]′DxB(x),

where the matrix A is constant with respect to x, we obtain

DSλ
tr(G(ρ)Λ(Sλ, σ2)−1) = −[vec (Λ(Sλ, σ2)−1G(ρ)Λ(Sλ, σ2)−1)′]′DSλ

Λ(Sλ, σ2)

= −σ−2[vec (Λ(Sλ, σ2)−1G(ρ)Λ(Sλ, σ2)−1)′]′(Γ(ρ)−1D⊗ Γ(ρ)−1D). (C.7)

Hence, we finally obtain

DSλ
Q(θ) = DSλ

log(|Λ(Ŝλ, σ2)|) + σ−2DSλ
tr(G(ρ)Λ(Ŝλ, σ2)−1)

= σ−2[vec (Λ(Ŝλ, σ2)−1′)]′(Γ(ρ)−1D⊗ Γ(ρ)−1D)

− σ−4[vec (Λ(Ŝλ, σ2)−1G(ρ)Λ(Ŝλ, σ2)−1)′]′(Γ(ρ)−1D⊗ Γ(ρ)−1D)

= [vec [Λ(Ŝλ, σ2)−1′ − σ−2(Λ(Ŝλ, σ2)−1G(ρ)Λ(Ŝλ, σ2)−1)′]]′(Γ(ρ)−1D⊗ Γ(ρ)−1D)

= 01×m2 , (C.8)

where the equality holds if and only if

G(ρ) = σ2Λ(Ŝλ, σ2) = σ2(IT + σ−2Γ(ρ)−1DŜλD′Γ(ρ)−1′). (C.9)

Hence,

Ŝλ = σ2(Γ(ρ)−1D)+(σ−2G− IT)(Γ(ρ)−1D)+′, (C.10)

where A+ = (A′A)−1A′ is the Moon–Penrose inverse of A. Note that Ŝλ = Ŝλ(θ2). Combin-

ing the results, the concentrated discrepancy function becomes

Q∗(θ2) = T log(σ2) + log(|Λ̂(θ2)|) + σ−2tr(G(ρ)Λ̂(θ2)
−1), (C.11)

where Λ̂(θ2) = IT + σ2Γ(ρ)−1DŜλD′Γ(ρ)−1′. The required expression for `∗(θ) is implied by

this.

D Derivatives

In Lemma A we report first and second order derivatives of `∗ with respect to ρ. Be-

fore resenting them, we need to introduce some notation. We begin by defining Q(ρ) =
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D′Γ(ρ)−1′Γ(ρ)−1D. This is a function of ρ. To simplify notation, however, in this appendix

matrices such as Q(ρ), G(ρ), L(ρ) and Σ(θ) will be written as Q, G, L and Σ, respectively,

with the dependence on θ (and hence ρ) suppressed. The derivatives are stated in terms of

the following scalars:

R1 = tr (MΓ−1DGMΓ−1DL− σ2LMΓ−1D),

R2 = tr [σ2(D′Γ−1′GΓ−1D)−1D′Γ−1′(L′ + L)MΓ−1DGΓ−1D],

r1 = tr (−σ2MΓ−1DLMΓ−1D(L′ + L) + (G− σ2 IT)MΓ−1DLLMΓ−1D

− (G− σ2 IT)MΓ−1D(L′ + L)MΓ−1D(L′ + L)MΓ−1D

+ (G− σ2 IT)MΓ−1DL(L′ + L)MΓ−1D),

r2 = σ2tr [(D′Γ−1′GΓ−1D)−1(D′Γ−1′(L′ + L)GΓ−1D + D′Γ−1′G(L′ + L)Γ−1D)

× (D′Γ−1′GΓ−1D)−1D′Γ−1′(L′ + L)MΓ−1DGΓ−1D

+ (D′Γ−1′GΓ−1D)−1(D′Γ−1′(L′ + L)(L′ + L)MΓ−1DGΓ−1D

− D′Γ−1′(L′ + L)MΓ−1D(L′ + L)MΓ−1DGΓ−1D

− D′Γ−1′(L′ + L)MΓ−1DG(L′ + L)Γ−1D− 2D′Γ−1′L′LMΓ−1DGΓ−1D)].

These scalars are all functions of θ2. For ease of notation, however, we suppress this depen-

dence on θ2.

Lemma D.1. For any vector Dt,

(a)
1
N

∂`∗

∂ρ
= σ−2(R1 + R2),

(b)
1
N

∂`∗

∂σ2 = − T
2σ2 +

m
2σ2 +

1
2σ4 tr (GMΓ−1D),

(c)
1
N

∂2`∗

(∂ρ)2 = σ−2(r1 + r2),

(d)
1
N

∂2`∗

(∂σ2)2 =
T

2σ4 −
m

2σ4 − σ−6tr (GMΓ−1D),

(e)
1
N

∂2`∗

∂ρ∂σ2 = −σ−4tr (MΓ−1DGMΓ−1DL).

Proof: Consider (a). We begin by recalling that

`∗ = −NT
2

log(σ2)− N
2

log(|Λ̂|)− N
2σ2 tr [GΛ̂−1], (D.12)

implying

∂`∗

∂ρ
= −N

2
Dρ log(|Λ̂|)− N

2σ2 Dρ tr (GΛ̂−1). (D.13)
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We need to evaluate two terms; Dρ log(|Λ̂|) and Dρ tr (GΛ̂−1). Consider Dρ log(|Λ̂|). We

can show that log(|Λ̂|) = log(|σ−2D′Γ−1′GΓ−1DQ−1|). Indeed, applying Sylvester’s deter-

minant identity, we obtain

|Λ̂| = |IT + σ−2Γ−1DŜλD′Γ−1′|

= |I2 + σ−2ŜλD′Γ−1′Γ−1D| = |I2 + σ−2ŜλQ|. (D.14)

Because

Ŝλ = σ2(Γ−1D)+(σ−2G− IT)(Γ−1D)+′

= (D′Γ−1′Γ−1D)−1D′Γ−1′GΓ−1D(D′Γ−1′Γ−1D)−1 − σ2(D′Γ−1′Γ−1D)−1

= Q−1D′Γ−1′GΓ−1DQ−1 − σ2Q−1, (D.15)

by the direct insertion we obtain

|Λ̂| = |I2 + σ−2ŜλQ|

= |I2 + σ−2(Q−1D′Γ−1′GΓ−1DQ−1 − σ2Q−1)Q| = |σ2Q−1D′Γ−1′GΓ−1D|

= |σ2D′Γ−1′GΓ−1DQ−1|, (D.16)

because the determinant of a transpose is the same. By using this result and Dx log |A| =

(vec (A′−1))′Dx A, we get

Dρ log(|Λ̂|) = Dρ log(|σ−2D′Γ−1′GΓ−1DQ−1|)

= [vec (σ2(D′Γ−1′GΓ−1D)−1Q)]′Dρ (σ
−2D′Γ−1′GΓ−1DQ−1), (D.17)

where the last equality holds due to symmetry of Q and G and (AB)−1′ = A−1′B−1′. Con-

sider σ−2D′Γ−1′GΓ−1DQ−1. From dx AB = (dx A)B + A(dx B),

dρ (σ
−2D′Γ−1′GΓ−1DQ−1)

= σ−2D′dρ (Γ−1′)GΓ−1DQ−1 + σ−2D′Γ−1′(dρ G)Γ−1DQ−1

+ σ−2D′Γ−1′G(dρ Γ−1)DQ−1 + σ−2D′Γ−1′GΓ−1D(dρ Q−1).

Further use of vec(ABC) = (C′ ⊗ A)vec B yields

Dρ (σ
−2D′Γ−1′GΓ−1DQ−1)

= σ−2(Q−1D′Γ−1′G⊗ D′)Dρ Γ−1′ + σ−2(Q−1D′Γ−1′ ⊗ D′Γ−1′)Dρ G

+ σ−2(Q−1D′ ⊗ D′Γ−1′G)Dρ Γ−1 + σ−2(IT ⊗ D′Γ−1′GΓ−1D)Dρ Q−1. (D.18)
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In order to evaluate this expression, we need Dρ Γ−1, Dρ Γ−1′, Dρ G and Dρ Q−1. Consider

Dρ Γ−1. Here

dρ Γ−1 = dρ


1 0 0 . . . 0
−ρ 1 0 . . . 0
0 −ρ 1 . . . 0
...

. . . . . . . . .
...

0 . . . 0 −ρ 1

 =


0 0 0 . . . 0
−1 0 0 . . . 0
0 −1 0 . . . 0
...

. . . . . . . . .
...

0 . . . 0 −1 0

dρ = −Jdρ.

Repeated use of vec(ABC) = (C′⊗A)vec B yields Dρ Γ−1 = −(IT⊗ IT)vec J. Since dx (A′) =

(dx A)′, we also have Dρ Γ−1′ = −(IT ⊗ IT)vec J′. Moreover, from dx AB = (dx A)B +

A(dx B), we get

dρ G = dρ (Γ−1SyΓ−1′) = (dρ Γ−1)SyΓ−1′ + Γ−1Sy(dρ Γ−1)′,

and so, via vec(ABC) = (C′ ⊗ A)vec B,

vec dρ G = (Γ−1 ⊗ dρ Γ−1 + dρ Γ−1 ⊗ Γ−1)vec Sy = −(Γ−1 ⊗ Jdρ + Jdρ⊗ Γ−1)vec Sy.

It follows that

Dρ G = −(Γ−1 ⊗ J + J ⊗ Γ−1)vec Sy. (D.19)

Next, consider Dρ Q−1. From dx A−1 = −A−1(dx A)A−1, vec(ABC) = (C′ ⊗ A)vec B,

and the symmetry of Q,

Dρ Q−1 = −(Q−1 ⊗Q−1)Dρ Q,

where

dρ Q = D′[(dρ Γ−1′)Γ−1 + Γ−1′(dρ Γ−1)]D.

By using this, vec(ABC) = (C′ ⊗ A)vec B, dρ (A′) = (dρ A)′, Dρ Γ−1 = −(IT ⊗ IT)vec J and

Dρ Γ−1′ = −(IT ⊗ IT)vec J′, we can show that

Dρ Q = (D′Γ−1′ ⊗ D′)Dρ Γ−1′ + (D′ ⊗ D′Γ−1′)Dρ Γ−1

= −(D′Γ−1′ ⊗ D′)vec J′ − (D′ ⊗ D′Γ−1′)vec J. (D.20)

Hence, since (A⊗ B)(C⊗ D) = AC⊗ BD,

Dρ Q−1 = (Q−1 ⊗Q−1)[(D′Γ−1′ ⊗ D′)vec J′ + (D′ ⊗ D′Γ−1′)vec J]

= (Q−1D′Γ−1′ ⊗Q−1D′)vec J′ + (Q−1D′ ⊗Q−1D′Γ−1′)vec J.
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By inserting the expressions for Dρ Γ−1, Dρ Γ−1′, Dρ G and Dρ Q−1 into (D.18) and using

(A⊗ B)(C⊗ D) = AC⊗ BD, we obtain

Dρ (σ
−2D′Γ−1′GΓ−1DQ−1)

= −σ−2(Q−1D′Γ−1′G⊗ D′)vec J′ − σ−2(Q−1D′ ⊗ D′Γ−1′G)vec J

− σ−2(Q−1D′Γ−1′Γ−1 ⊗ D′Γ−1′ J)vec Sy − σ−2(Q−1D′Γ−1′ J ⊗ D′Γ−1′Γ−1)vec Sy

+ σ−2(Q−1D′Γ−1′ ⊗ D′Γ−1′GΓ−1DQ−1D′)vec J′

+ σ−2(Q−1D′ ⊗ D′Γ−1′GΓ−1DQ−1D′Γ−1′)vec J. (D.21)

Further use of vec(ABC) = (C′ ⊗ A)vec B gives

Dρ (σ
−2D′Γ−1′GΓ−1DQ−1)

= −σ−2vec (D′ J′GΓ−1DQ−1)− σ−2vec (D′Γ−1′GJDQ−1)

− σ−2vec (D′Γ−1′ JSyΓ−1′Γ−1DQ−1)− σ−2vec (D′Γ−1′Γ−1Sy J′Γ−1DQ−1)

+ σ−2vec (D′Γ−1′GΓ−1DQ−1D′ J′Γ−1DQ−1)

+ σ−2vec (D′Γ−1′GΓ−1DQ−1D′Γ−1′ JDQ−1)

= −σ−2vec (D′Γ−1′Γ′ J′GΓ−1DQ−1)− σ−2vec (D′Γ−1′GJΓΓ−1DQ−1)

− σ−2vec (D′Γ−1′ JΓSuΓ′Γ−1′Γ−1DQ−1)− σ−2vec (D′Γ−1′Γ−1ΓSuΓ′ J′Γ−1DQ−1)

+ σ−2vec (D′Γ−1′GΓ−1DQ−1D′Γ−1′Γ′ J′Γ−1DQ−1)

+ σ−2vec (D′Γ−1′GΓ−1DQ−1D′Γ−1′ JΓΓ−1DQ−1)

= −σ−2vec (D′Γ−1′L′GΓ−1DQ−1)− σ−2vec (D′Γ−1′GLΓ−1DQ−1)

− σ−2vec (D′Γ−1′LGΓ−1DQ−1)− σ−2vec (D′Γ−1′GL′Γ−1DQ−1)

+ σ−2vec (D′Γ−1′GΓ−1DQ−1D′Γ−1′L′Γ−1DQ−1)

+ σ−2vec (D′Γ−1′GΓ−1DQ−1D′Γ−1′LΓ−1DQ−1), (D.22)

where the second equality is due to Sy = ΓSuΓ′, while the last equality holds because of

JΓ = L and Su = G. Since tr (A′B) = (vec A)′vec B, this implies that Dρ log(|Λ̂|) can be
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written in the following fashion:

Dρ log(|Λ̂|)

= [vec (σ2(D′Γ−1′GΓ−1D)−1Q)]′Dρ (σ
−2D′Γ−1′GΓ−1DQ−1),

= [vec (σ2(D′Γ−1′GΓ−1D)−1Q)]′σ−2vec (−D′Γ−1′L′GΓ−1DQ−1

− D′Γ−1′GLΓ−1DQ−1 − D′Γ−1′LGΓ−1DQ−1 − D′Γ−1′GL′Γ−1DQ−1

+ D′Γ−1′GΓ−1DQ−1D′Γ−1′L′Γ−1DQ−1 + D′Γ−1′GΓ−1DQ−1D′Γ−1′LΓ−1DQ−1)

= tr [Q(D′Γ−1′GΓ−1D)−1(−D′Γ−1′L′GΓ−1DQ−1

− D′Γ−1′GLΓ−1DQ−1 − D′Γ−1′LGΓ−1DQ−1 − D′Γ−1′GL′Γ−1DQ−1

+ D′Γ−1′GΓ−1DQ−1D′Γ−1′L′Γ−1DQ−1 + D′Γ−1′GΓ−1DQ−1D′Γ−1′LΓ−1DQ−1)]

= tr [(D′Γ−1′GΓ−1D)−1(−2D′Γ−1′(L′ + L)GΓ−1D

+ D′Γ−1′GΓ−1DQ−1D′Γ−1′(L′ + L)Γ−1D)]. (D.23)

This can be simplified. We begin by noting that if we let PΓ−1D = Γ−1DQ−1D′Γ−1′ and

MΓ−1D = IT − PΓ−1D, then

Dρ log(|Λ̂|)

= tr [(D′Γ−1′GΓ−1D)−1(−2D′Γ−1′(L′ + L)GΓ−1D

+ D′Γ−1′GΓ−1DQ−1D′Γ−1′(L′ + L)Γ−1D)]

= tr [(D′Γ−1′GΓ−1D)−1(−2D′Γ−1′(L′ + L)GΓ−1D + 2D′Γ−1′GPΓ−1D(L′ + L)Γ−1D

− D′Γ−1′GΓ−1DQ−1D′Γ−1′(L′ + L)Γ−1D)]

= −2tr [(D′Γ−1′GΓ−1D)−1D′Γ−1′(L′ + L)(IT − PΓ−1D)GΓ−1D]

− tr [(D′Γ−1′GΓ−1D)−1D′Γ−1′GΓ−1DQ−1D′Γ−1′(L′ + L)Γ−1D)]

= −2tr [(D′Γ−1′GΓ−1D)−1D′Γ−1′(L′ + L)MΓ−1DGΓ−1D]

− tr [Q−1D′Γ−1′(L′ + L)Γ−1D]

= −2tr [(D′Γ−1′GΓ−1D)−1D′Γ−1′(L′ + L)MΓ−1DGΓ−1D]− 2tr [LPΓ−1D]

= −2tr [(D′Γ−1′GΓ−1D)−1D′Γ−1′(L′ + L)MΓ−1DGΓ−1D] + 2tr [LMΓ−1D], (D.24)

where the last equality holds because tr L = 0.

Let us now consider the second term in (D.13), Dρ tr (GΛ̂−1). We begin by inserting

Λ̂−1 = IT − Γ−1DKD′Γ−1′ and K = Q−1 − σ2(D′Γ−1′GΓ−1D)−1, which we obtain from The

Woodbury identity stating that (A + CBC′)−1 = A−1 − A−1C(B−1 + C′A−1C)−1C′A−1 (see
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AAbadir and Magnus, 2005, Exercise 5.17). Application of this identity to Λ̂−1 yields, with

K = (σ2Ŝ−1
λ + Q)−1,

Λ̂−1 = IT − Γ−1D(σ2Ŝ−1
λ + Q)−1D′Γ−1′ = IT − Γ−1DKD′Γ−1′. (D.25)

Using the expression for Ŝλ again and (A+CBC′)−1 = A−1−A−1C(B−1 +C′A−1C)−1C′A−1,

K = (σ2Ŝ−1
λ + Q)−1 = Q−1 −Q−1(σ−2Ŝλ + Q−1)−1Q−1

= Q−1 − σ2(D′Γ−1′GΓ−1D)−1. (D.26)

The direct insertion then leads to

tr (GΛ̂−1)

= tr [G(IT − Γ−1DQ−1D′Γ−1′ + σ2Γ−1D(D′Γ−1′GΓ−1D)−1D′Γ−1′)]

= tr [G(IT − PΓ−1D)] + σ2tr [GΓ−1D(D′Γ−1′GΓ−1D)−1D′Γ−1′]

= tr (GMΓ−1D) + σ2tr [(D′Γ−1′GΓ−1D)−1D′Γ−1′GΓ−1D]

= tr (GMΓ−1D) + σ2tr Im = tr (GMΓ−1D) + σ2m, (D.27)

implying that

Dρ tr (GΛ̂−1) = Dρ tr (GMΓ−1D) = (vec IT)
′Dρ (GMΓ−1D). (D.28)

By using dx AB = (dx A)B + A(dx B), we get

dρ (GMΓ−1D) = (dρ G)MΓ−1D + G(dρ MΓ−1D) = (dρ G)MΓ−1D − G(dρ PΓ−1D),

and so, via vec(ABC) = (C′ ⊗ A)vec B,

Dρ (GMΓ−1D) = (MΓ−1D ⊗ IT)Dρ G− (IT ⊗ G)Dρ PΓ−1D.

Consider Dρ PΓ−1D. Repeated use of dx AB = (dx A)B + A(dx B) yields

dρ PΓ−1D = dρ (Γ−1DQ−1D′Γ−1′)

= (dρ Γ−1)DQ−1D′Γ−1′ + Γ−1D(dρ Q−1)D′Γ−1′ + Γ−1DQ−1D′(dρ Γ−1′),

and by further use vec(ABC) = (C′ ⊗ A)vec B, (A⊗ B)(C ⊗ D) = AC ⊗ BD and A⊗ B +
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A⊗ C = A⊗ (B + C), we get

Dρ PΓ−1D

= (Γ−1DQ−1D′ ⊗ IT)Dρ Γ−1 + (IT ⊗ Γ−1DQ−1D′)Dρ Γ−1′

+ (Γ−1D⊗ Γ−1D)Dρ Q−1

= −(Γ−1DQ−1D′ ⊗ IT)vec J − (IT ⊗ Γ−1DQ−1D′)vec J′

+ (Γ−1D⊗ Γ−1D)(Q−1D′Γ−1′ ⊗Q−1D′)vec J′

+ (Γ−1D⊗ Γ−1D)(Q−1D′ ⊗Q−1D′Γ−1′)vec J

= −(Γ−1DQ−1D′ ⊗ IT)vec J − (IT ⊗ Γ−1DQ−1D′)vec J′

+ (Γ−1DQ−1D′Γ−1′ ⊗ Γ−1DQ−1D′)vec J′

+ (Γ−1DQ−1D′ ⊗ Γ−1DQ−1D′Γ−1′)vec J

= −(Γ−1DQ−1D′ ⊗ IT)vec J − (IT ⊗ Γ−1DQ−1D′)vec J′

+ (PΓ−1D ⊗ Γ−1DQ−1D′)vec J′ + (Γ−1DQ−1D′ ⊗ PΓ−1D)vec J

= −(Γ−1DQ−1D′ ⊗ IT)vec J − (IT ⊗ Γ−1DQ−1D′)vec J′

+ (PΓ−1D ⊗ Γ−1DQ−1D′)vec J′ + (Γ−1DQ−1D′ ⊗ PΓ−1D)vec J

= −(Γ−1DQ−1D′ ⊗ (IT − PΓ−1D))vec J − ((IT − PΓ−1D)⊗ Γ−1DQ−1D′)vec J′

= −(Γ−1DQ−1D′ ⊗MΓ−1D)vec J − (MΓ−1D ⊗ Γ−1DQ−1D′)vec J′

= −(Γ−1DQ−1D′Γ−1′Γ′ ⊗MΓ−1D)vec J − (MΓ−1D ⊗ Γ−1DQ−1D′Γ−1′Γ′)vec J′

= −(PΓ−1DΓ′ ⊗MΓ−1D)vec J − (MΓ−1D ⊗ PΓ−1DΓ′)vec J′.

By inserting the expressions for Dρ G and Dρ PΓ−1D into (D.29) and simplifying, we obtain

the following expression for Dρ (GMΓ−1D):

Dρ (GMΓ−1D)

= (MΓ−1D ⊗ IT)Dρ G− (IT ⊗ G)Dρ PΓ−1D

= −(MΓ−1D ⊗ IT)(Γ−1 ⊗ J)vec Sy − (MΓ−1D ⊗ IT)(J ⊗ Γ−1)vec Sy

+ (IT ⊗ G)(PΓ−1DΓ′ ⊗MΓ−1D)vec J + (IT ⊗ G)(MΓ−1D ⊗ PΓ−1DΓ′)vec J′

= −(MΓ−1DΓ−1 ⊗ J)vec Sy − (MΓ−1D J ⊗ Γ−1)vec Sy

+ (PΓ−1DΓ′ ⊗ GMΓ−1D)vec J + (MΓ−1D ⊗ GPΓ−1DΓ′)vec J′,
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which can be simplified using vec(ABC) = (C′ ⊗ A)vec B, Sy = ΓSuΓ′, JΓ = L and Su = G;

Dρ (GMΓ−1D)

= −(MΓ−1DΓ−1 ⊗ J)vec Sy − (MΓ−1D J ⊗ Γ−1)vec Sy

+ (PΓ−1DΓ′ ⊗ GMΓ−1D)vec J + (MΓ−1D ⊗ GPΓ−1DΓ′)vec J′

= −vec (JΓSuΓ′Γ−1′MΓ−1D)− vec (Γ−1ΓSuΓ′ J′MΓ−1D)

+ vec (GMΓ−1D JΓPΓ−1D) + vec (GPΓ−1DΓ′ J′MΓ−1D)

= vec (−LGMΓ−1D − GL′MΓ−1D + GMΓ−1DLPΓ−1D + GPΓ−1DL′MΓ−1D).

Direct insertion into the expression for Dρ tr (GΛ̂−1) yields

Dρ tr (GΛ̂−1)

= (vec IT)
′Dρ (GMΓ−1D)

= (vec IT)
′vec (−LGMΓ−1D − GL′MΓ−1D + GMΓ−1DLPΓ−1D + GPΓ−1DL′MΓ−1D)

= tr (−LGMΓ−1D − GL′MΓ−1D + GMΓ−1DLPΓ−1D + GPΓ−1DL′MΓ−1D)

= 2tr (−GMΓ−1DL + GMΓ−1DLPΓ−1D) = 2tr [−GMΓ−1DL(IT − PΓ−1D)]

= −2tr (GMΓ−1DLMΓ−1D) (D.29)

The above results for Dρ log(|Λ̂|) and Dρ tr (GΛ̂−1) lead to the following expression for

∂`∗/∂ρ:

2σ2

N
∂`∗

∂ρ
= −σ2Dρ log(|Λ̂|)−Dρ tr (GΛ̂−1)

= 2tr [σ2(D′Γ−1′GΓ−1D)−1D′Γ−1′(L′ + L)GMΓ−1DΓ−1D]

− 2σ2tr (LMΓ−1D) + 2tr (MΓ−1DGMΓ−1DL)

= 2(R1 + R2), (D.30)

where

R1 = tr (MΓ−1DGMΓ−1DL− σ2LMΓ−1D),

R2 = tr [σ2(D′Γ−1′GΓ−1D)−1D′Γ−1′(L′ + L)MΓ−1DGΓ−1D].

This establishes (a).

Let us now consider (b). The starting point is

2σ2

N
∂2`∗

(∂ρ)2 = 2(DρR1 + DρR2).
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We begin with DρR1. From definition of R1, we have

R1 = tr (MΓ−1DGMΓ−1DL− σ2LMΓ−1D)

= tr (GMΓ−1DLMΓ−1D − σ2MΓ−1DLMΓ−1D)

= tr [(G− σ2 IT)MΓ−1DLMΓ−1D].

Hence, via tr (A′B) = (vec A)′vec B,

DρR1 = Dρtr [(G− σ2 IT)MΓ−1DLMΓ−1D]

= (vec IT)
′Dρ[(G− σ2 IT)MΓ−1DLMΓ−1D].

By use of dx AB = (dx A)B + A(dx B), it is clear that

dρ[(G− σ2 IT)MΓ−1DLMΓ−1D]

= [dρ(G− σ2 IT)]MΓ−1DLMΓ−1D + (G− σ2 IT)(dρ MΓ−1D)LMΓ−1D

+ (G− σ2 IT)MΓ−1D(dρL)MΓ−1D + (G− σ2 IT)MΓ−1DL(dρ MΓ−1D)

= (dρG)MΓ−1DLMΓ−1D − (G− σ2 IT)(dρPΓ−1D)LMΓ−1D

+ (G− σ2 IT)MΓ−1D(dρL)MΓ−1D − (G− σ2 IT)MΓ−1DL(dρPΓ−1D),

where the last equality holds due to dρ(G− σ2 IT) = dρG and dρ MΓ−1D = dρ(IT − PΓ−1D) =

−dρPΓ−1D. By using this and vec(ABC) = (C′ ⊗ A)vec B, we obtain

Dρ[(G− σ2 IT)MΓ−1DLMΓ−1D]

= (MΓ−1DL′MΓ−1D ⊗ IT)DρG− (MΓ−1DL′ ⊗ (G− σ2 IT))DρPΓ−1D

+ (MΓ−1D ⊗ (G− σ2 IT)MΓ−1D)DρL− (IT ⊗ (G− σ2 IT)MΓ−1DL)DρPΓ−1D, (D.31)

where DρG and DρPΓ−1D are known from before. As for DρL, we use L = JΓ and, by applying

dx AB = (dx A)B + A(dx B), we get dρL = J(dρΓ), where

dρ Γ = dρ


1 0 . . . 0

ρ 1
. . .

...
...

. . . . . . 0
ρT−1 . . . ρ 1

 =


0 0 0 . . . 0
1 0 0 . . . 0

2ρ 1 0 . . . 0
...

. . . . . . . . .
...

(T − 1)ρT−2 . . . 2ρ 1 0

dρ = ΓJΓdρ.

By using this, vec(ABC) = (C′ ⊗ A)vec B and L = JΓ, we obtain

Dρ L = vec (JΓJΓ) = (Γ′ ⊗ JΓ)vec J = (Γ′ ⊗ L)vec J. (D.32)
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Insertion into (D.31) yields

Dρ[(G− σ2 IT)MΓ−1DLMΓ−1D]

= −(MΓ−1DL′MΓ−1D ⊗ IT)(Γ−1 ⊗ J)vec Sy − (MΓ−1DL′MΓ−1D ⊗ IT)(J ⊗ Γ−1)vec Sy

+ (MΓ−1DL′ ⊗ (G− σ2 IT))(PΓ−1DΓ′ ⊗MΓ−1D)vec J

+ (MΓ−1DL′ ⊗ (G− σ2 IT))(MΓ−1D ⊗ PΓ−1DΓ′)vec J′

+ (IT ⊗ (G− σ2 IT)MΓ−1DL)(PΓ−1DΓ′ ⊗MΓ−1D)vec J

+ (IT ⊗ (G− σ2 IT)MΓ−1DL)(MΓ−1D ⊗ PΓ−1DΓ′)vec J′

+ (MΓ−1D ⊗ (G− σ2 IT)MΓ−1D)(Γ
′ ⊗ L)vec J

= −(MΓ−1DL′MΓ−1DΓ−1 ⊗ J)vec Sy − (MΓ−1DL′MΓ−1D J ⊗ Γ−1)vec Sy

+ (MΓ−1DL′PΓ−1DΓ′ ⊗ (G− σ2 IT)MΓ−1D)vec J

+ (MΓ−1DL′MΓ−1D ⊗ (G− σ2 IT)PΓ−1DΓ′)vec J′

+ (PΓ−1DΓ′ ⊗ (G− σ2 IT)MΓ−1DLMΓ−1D)vec J

+ (MΓ−1D ⊗ (G− σ2 IT)MΓ−1DLPΓ−1DΓ′)vec J′

+ (MΓ−1DΓ′ ⊗ (G− σ2 IT)MΓ−1DL)vec J,

where the second equality is due to (A⊗ B)(C⊗ D) = (AC⊗ BD). This expression can be
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further simplified. Indeed, use of vec(ABC) = (C′ ⊗ A)vec B yields

Dρ[(G− σ2 IT)MΓ−1DLMΓ−1D]

= −vec (JSyΓ−1′MΓ−1DLMΓ−1D)− vec (Γ−1Sy J′MΓ−1DLMΓ−1D)

+ vec ((G− σ2 IT)MΓ−1D JΓPΓ−1DLMΓ−1D)

+ vec ((G− σ2 IT)PΓ−1DΓ′ J′MΓ−1DLMΓ−1D)

+ vec ((G− σ2 IT)MΓ−1DLMΓ−1D JΓPΓ−1D)

+ vec ((G− σ2 IT)MΓ−1DLPΓ−1DΓ′ J′MΓ−1D)

+ vec ((G− σ2 IT)MΓ−1DLJΓMΓ−1D)

= vec (−JΓΓ−1SyΓ−1′MΓ−1DLMΓ−1D − Γ−1SyΓ−1′Γ′ J′MΓ−1DLMΓ−1D

+ (G− σ2 IT)MΓ−1D JΓPΓ−1DLMΓ−1D + (G− σ2 IT)PΓ−1DΓ′ J′MΓ−1DLMΓ−1D

+ (G− σ2 IT)MΓ−1DLMΓ−1D JΓPΓ−1D + (G− σ2 IT)MΓ−1DLPΓ−1DΓ′ J′MΓ−1D

+ (G− σ2 IT)MΓ−1DLJΓMΓ−1D)

= vec (−LGMΓ−1DLMΓ−1D − GL′MΓ−1DLMΓ−1D

+ (G− σ2 IT)MΓ−1DLPΓ−1DLMΓ−1D + (G− σ2 IT)PΓ−1DL′MΓ−1DLMΓ−1D

+ (G− σ2 IT)MΓ−1DLMΓ−1DLPΓ−1D + (G− σ2 IT)MΓ−1DLPΓ−1DL′MΓ−1D

+ (G− σ2 IT)MΓ−1DLLMΓ−1D)

= vec (−LGMΓ−1DLMΓ−1D − GL′MΓ−1DLMΓ−1D

− (G− σ2 IT)MΓ−1DLMΓ−1DLMΓ−1D − (G− σ2 IT)MΓ−1DL′MΓ−1DLMΓ−1D

− (G− σ2 IT)MΓ−1DLMΓ−1DLMΓ−1D − (G− σ2 IT)MΓ−1DLMΓ−1DL′MΓ−1D

+ (G− σ2 IT)MΓ−1DLLMΓ−1D + (G− σ2 IT)L′MΓ−1DLMΓ−1D

+ (G− σ2 IT)MΓ−1DLMΓ−1DL + (G− σ2 IT)MΓ−1DLL′MΓ−1D

+ (G− σ2 IT)MΓ−1DLLMΓ−1D)

= vec (−LGMΓ−1DLMΓ−1D − GL′MΓ−1DLMΓ−1D

− (G− σ2 IT)MΓ−1DLMΓ−1D(L′ + L)MΓ−1D

− (G− σ2 IT)MΓ−1D(L′ + L)MΓ−1DLMΓ−1D

+ (G− σ2 IT)MΓ−1DLMΓ−1DL + (G− σ2 IT)L′MΓ−1DLMΓ−1D

+ (G− σ2 IT)MΓ−1DLL′MΓ−1D + 2(G− σ2 IT)MΓ−1DLLMΓ−1D),

where the third equality is due to Γ−1SyΓ−1′ = G and JΓ = L, whereas the fourth equality is
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due to PΓ−1D = IT −MΓ−1D. Hence, by making use of tr (A′B) = (vec A)′vec B, we get

DρR1

= Dρtr [(G− σ2 IT)MΓ−1DLMΓ−1D]

= (vec IT)
′Dρ[(G− σ2 IT)MΓ−1DLMΓ−1D]

= (vec IT)
′vec (−LGMΓ−1DLMΓ−1D − GL′MΓ−1DLMΓ−1D

− (G− σ2 IT)MΓ−1DLMΓ−1D(L′ + L)MΓ−1D

− (G− σ2 IT)MΓ−1D(L′ + L)MΓ−1DLMΓ−1D

+ (G− σ2 IT)MΓ−1DLMΓ−1DL + (G− σ2 IT)L′MΓ−1DLMΓ−1D

+ (G− σ2 IT)MΓ−1DLL′MΓ−1D + 2(G− σ2 IT)MΓ−1DLLMΓ−1D)

= tr (−GMΓ−1DLMΓ−1DL− GL′MΓ−1DLMΓ−1D

− (G− σ2 IT)MΓ−1D(L′ + L)MΓ−1DL′MΓ−1D

− (G− σ2 IT)MΓ−1D(L′ + L)MΓ−1DLMΓ−1D

+ (G− σ2 IT)MΓ−1DLMΓ−1DL + (G− σ2 IT)L′MΓ−1DLMΓ−1D

+ (G− σ2 IT)MΓ−1DLL′MΓ−1D + 2(G− σ2 IT)MΓ−1DLLMΓ−1D)

= tr (−σ2MΓ−1DLMΓ−1DL− σ2L′MΓ−1DLMΓ−1D

− (G− σ2 IT)MΓ−1D(L′ + L)MΓ−1D(L′ + L)MΓ−1D

+ (G− σ2 IT)MΓ−1DLL′MΓ−1D + 2(G− σ2 IT)MΓ−1DLLMΓ−1D)

= tr (−σ2MΓ−1DLMΓ−1D(L′ + L) + (G− σ2 IT)MΓ−1DLLMΓ−1D

− (G− σ2 IT)MΓ−1D(L′ + L)MΓ−1D(L′ + L)MΓ−1D

+ (G− σ2 IT)MΓ−1DL(L′ + L)MΓ−1D) = r1.

Next up is DρR2. We have

DρR2 = Dρtr [σ2(D′Γ−1′GΓ−1D)−1D′Γ−1′(L′ + L)MΓ−1DGΓ−1D]

= (vec IT)
′Dρ[σ

2(D′Γ−1′GΓ−1D)−1D′Γ−1′(L′ + L)MΓ−1DGΓ−1D].

From dx AB = (dx A)B + A(dx B), we get

dρ[σ
2(D′Γ−1′GΓ−1D)−1D′Γ−1′(L′ + L)MΓ−1DGΓ−1D]

= σ2dρ[(D′Γ−1′GΓ−1D)−1]D′Γ−1′(L′ + L)MΓ−1DGΓ−1D

+ σ2(D′Γ−1′GΓ−1D)−1dρ[D′Γ−1′(L′ + L)MΓ−1DGΓ−1D]
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which via vec(ABC) = (C′ ⊗ A)vec B yields

DρR2

= σ2(vec IT)
′(D′Γ−1′GMΓ−1D(L′ + L)Γ−1D⊗ Im)Dρ[(D′Γ−1′GΓ−1D)−1]

+ σ2(vec IT)
′(Im ⊗ (D′Γ−1′GΓ−1D)−1)Dρ[D′Γ−1′(L′ + L)MΓ−1DGΓ−1D]. (D.33)

Consider the first term on the right. From dx A−1 = −A−1(dx A)A−1, vec(ABC) = (C′ ⊗

A)vec B, and the symmetry of G, we get

Dρ (D′Γ−1′GΓ−1D)−1

= −((D′Γ−1′GΓ−1D)−1 ⊗ (D′Γ−1′GΓ−1D)−1)Dρ (D′Γ−1′GΓ−1D).

From dx AB = (dx A)B + A(dx B),

dρ (D′Γ−1′GΓ−1D)

= D′(dρ Γ−1′)GΓ−1D + D′Γ−1′(dρ G)Γ−1D + D′Γ−1′G(dρ Γ−1)D

= D′(dρ Γ−1′)GΓ−1D + D′Γ−1′(dρ G)Γ−1D + D′Γ−1′G(dρ Γ−1)D,

and so, via vec(ABC) = (C′ ⊗ A)vec B,

Dρ (D′Γ−1′GΓ−1D)

= (D′Γ−1′G⊗ D′)Dρ Γ−1′ + (D′Γ−1′ ⊗ D′Γ−1′)Dρ G + (D′ ⊗ D′Γ−1′G)Dρ Γ−1

= −(D′Γ−1′G⊗ D′)vec J′ − (D′ ⊗ D′Γ−1′G)vec J

− (D′Γ−1′ ⊗ D′Γ−1′)(Γ−1 ⊗ J)vec Sy − (D′Γ−1′ ⊗ D′Γ−1′)(J ⊗ Γ−1)vec Sy

= −(D′Γ−1′G⊗ D′)vec J′ − (D′ ⊗ D′Γ−1′G)vec J

− (D′Γ−1′Γ−1 ⊗ D′Γ−1′ J)vec Sy − (D′Γ−1′ J ⊗ D′Γ−1′Γ−1)vec Sy,

where the second equality is obtained by inserting the expressions for Dρ Γ−1, Dρ Γ−1′ and

Dρ G, while the last equality is due to (A ⊗ B)(C ⊗ D) = (AC ⊗ BD). Further use of
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vec(ABC) = (C′ ⊗ A)vec B yields

Dρ (D′Γ−1′GΓ−1D)

= −vec (D′ J′GΓ−1D)− vec (D′Γ−1′GJD)

− vec (D′Γ−1′ JSyΓ−1′Γ−1D)− vec (D′Γ−1′Γ−1Sy J′Γ−1D)

= −vec (D′Γ−1′Γ′ J′GΓ−1D)− vec (D′Γ−1′GJΓΓ−1D)

− vec (D′Γ−1′ JΓΓ−1SyΓ−1′Γ−1D)− vec (D′Γ−1′Γ−1SyΓ−1′Γ′ J′Γ−1D)

= vec (−D′Γ−1′L′GΓ−1D− D′Γ−1′GLΓ−1D− D′Γ−1′LGΓ−1D− D′Γ−1′GL′Γ−1D)

= vec (−D′Γ−1′(L′ + L)GΓ−1D− D′Γ−1′G(L′ + L)Γ−1D).

This result, together with vec(ABC) = (C′ ⊗ A)vec B, (A⊗ B)(C ⊗ D) = (AC ⊗ BD) and

tr (A′B) = (vec A)′vec B, imply that the first term on the right-hand side of (D.33) can be

written as

σ2(vec IT)
′(D′Γ−1′GMΓ−1D(L′ + L)Γ−1D⊗ Im)Dρ[(D′Γ−1′GΓ−1D)−1]

= −σ2(vec IT)
′(D′Γ−1′GMΓ−1D(L′ + L)Γ−1D⊗ Im)((D′Γ−1′GΓ−1D)−1

⊗ (D′Γ−1′GΓ−1D)−1)Dρ(D′Γ−1′GΓ−1D)

= −σ2(vec IT)
′(D′Γ−1′GMΓ−1D(L′ + L)Γ−1D(D′Γ−1′GΓ−1D)−1

⊗ (D′Γ−1′GΓ−1D)−1)Dρ(D′Γ−1′GΓ−1D)

= −σ2(vec IT)
′(D′Γ−1′GMΓ−1D(L′ + L)Γ−1D(D′Γ−1′GΓ−1D)−1

⊗ (D′Γ−1′GΓ−1D)−1)vec (−D′Γ−1′(L′ + L)GΓ−1D− D′Γ−1′G(L′ + L)Γ−1D)

= σ2(vec IT)
′vec [(D′Γ−1′GΓ−1D)−1(D′Γ−1′(L′ + L)GΓ−1D

+ D′Γ−1′G(L′ + L)Γ−1D)(D′Γ−1′GΓ−1D)−1D′Γ−1′(L′ + L)MΓ−1DGΓ−1D]

= σ2tr [(D′Γ−1′GΓ−1D)−1(D′Γ−1′(L′ + L)GΓ−1D + D′Γ−1′G(L′ + L)Γ−1D)

× (D′Γ−1′GΓ−1D)−1D′Γ−1′(L′ + L)MΓ−1DGΓ−1D]. (D.34)

In order to evaluate the second term on the right of (D.33), we need Dρ[D′Γ−1′(L′ +
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L)MΓ−1DGΓ−1D]. From dx AB = (dx A)B + A(dx B) and dρ MΓ−1D = −dρ PΓ−1D, we have

dρ (D′Γ−1′(L′ + L)MΓ−1DGΓ−1D)

= D′(dρ Γ−1′)(L′ + L)MΓ−1DGΓ−1D + D′Γ−1′dρ (L′ + L)MΓ−1DGΓ−1D

+ D′Γ−1′(L′ + L)(dρ MΓ−1D)GΓ−1D + D′Γ−1′(L′ + L)MΓ−1D(dρ G)Γ−1D

+ D′Γ−1′(L′ + L)MΓ−1DG(dρ Γ−1)D

= D′(dρ Γ−1′)(L′ + L)MΓ−1DGΓ−1D + D′Γ−1′dρ (L′ + L)MΓ−1DGΓ−1D

− D′Γ−1′(L′ + L)(dρ PΓ−1D)GΓ−1D + D′Γ−1′(L′ + L)MΓ−1D(dρ G)Γ−1D

+ D′Γ−1′(L′ + L)MΓ−1DG(dρ Γ−1)D.

By using this and vec(ABC) = (C′ ⊗ A)vec B, we can show that

Dρ (D′Γ−1′(L′ + L)MΓ−1DGΓ−1D)

= (D′Γ−1′GMΓ−1D(L′ + L)⊗ D′)Dρ Γ−1′ + (D′Γ−1′GMΓ−1D ⊗ D′Γ−1′)Dρ (L′ + L)

− (D′Γ−1′G⊗ D′Γ−1′(L′ + L))Dρ PΓ−1D + (D′Γ−1′ ⊗ D′Γ−1′(L′ + L)MΓ−1D)Dρ G

+ (D′ ⊗ D′Γ−1′(L′ + L)MΓ−1DG)Dρ Γ−1, (D.35)

where, via Dρ L′ = (L⊗ Γ′)vec J′,

Dρ (L′ + L) = Dρ L′ + Dρ L = (L⊗ Γ′)vec J′ + (Γ′ ⊗ L)vec J.

By inserting this together with the expressions obtained for Dρ Γ−1, Dρ Γ−1′, Dρ G and Dρ PΓ−1D

into (D.35), and using (A⊗ B)(C⊗ D) = (AC⊗ BD), we obtain the following:

Dρ (D′Γ−1′(L′ + L)MΓ−1DGΓ−1D)

= −(D′Γ−1′GMΓ−1D(L′ + L)⊗ D′)vecJ′ − (D′ ⊗ D′Γ−1′(L′ + L)MΓ−1DG)vecJ

+ (D′Γ−1′GPΓ−1DΓ′ ⊗ D′Γ−1′(L′ + L)MΓ−1D)vec J

+ (D′Γ−1′GMΓ−1D ⊗ D′Γ−1′(L′ + L)PΓ−1DΓ′)vec J′

− (D′Γ−1′Γ−1 ⊗ D′Γ−1′(L′ + L)MΓ−1D J)vec Sy

− (D′Γ−1′ J ⊗ D′Γ−1′(L′ + L)MΓ−1DΓ−1)vec Sy

+ (D′Γ−1′GMΓ−1DL⊗ D′Γ−1′Γ′)vec J′

+ (D′Γ−1′GMΓ−1DΓ′ ⊗ D′Γ−1′L)vec J,
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which can be simplified using vec(ABC) = (C′ ⊗ A)vec B, Γ−1SyΓ−1′ = G and JΓ = L;

Dρ (D′Γ−1′(L′ + L)MΓ−1DGΓ−1D)

= −vec(D′Γ−1′Γ′ J′(L′ + L)MΓ−1DGΓ−1D)− vec(D′Γ−1′(L′ + L)MΓ−1DGJΓΓ−1D)

+ vec (D′Γ−1′(L′ + L)MΓ−1D JΓPΓ−1DGΓ−1D)

+ vec (D′Γ−1′(L′ + L)PΓ−1DΓ′ J′MΓ−1DGΓ−1D)

− vec (D′Γ−1′(L′ + L)MΓ−1D JΓΓ−1SyΓ−1′Γ−1D)

− vec (D′Γ−1′(L′ + L)MΓ−1DΓ−1SyΓ−1′Γ′ J′Γ−1D)

+ vec (D′Γ−1′Γ′ J′L′MΓ−1DGΓ−1D) + vec (D′Γ−1′LJΓMΓ−1DGΓ−1D)

= −vec(D′Γ−1′L′(L′ + L)MΓ−1DGΓ−1D)− vec(D′Γ−1′(L′ + L)MΓ−1DGLΓ−1D)

+ vec (D′Γ−1′(L′ + L)MΓ−1DLPΓ−1DGΓ−1D)

+ vec (D′Γ−1′(L′ + L)PΓ−1DL′MΓ−1DGΓ−1D)

− vec (D′Γ−1′(L′ + L)MΓ−1DLGΓ−1D)− vec (D′Γ−1′(L′ + L)MΓ−1DGL′Γ−1D)

+ vec (D′Γ−1′L′L′MΓ−1DGΓ−1D) + vec (D′Γ−1′LLMΓ−1DGΓ−1D)

= −vec(D′Γ−1′L′LMΓ−1DGΓ−1D) + vec (D′Γ−1′LLMΓ−1DGΓ−1D)

− vec (D′Γ−1′(L′ + L)MΓ−1DLMΓ−1DGΓ−1D)

− vec (D′Γ−1′(L′ + L)MΓ−1DL′MΓ−1DGΓ−1D)

+ vec (D′Γ−1′(L′ + L)MΓ−1DLGΓ−1D) + vec (D′Γ−1′(L′ + L)L′MΓ−1DGΓ−1D)

− vec (D′Γ−1′(L′ + L)MΓ−1DLGΓ−1D)− vec(D′Γ−1′(L′ + L)MΓ−1DG(L′ + L)Γ−1D)

= vec(D′Γ−1′(L′ + L)(L′ + L)MΓ−1DGΓ−1D

− D′Γ−1′(L′ + L)MΓ−1D(L′ + L)MΓ−1DGΓ−1D

− D′Γ−1′(L′ + L)MΓ−1DG(L′ + L)Γ−1D− 2D′Γ−1′L′LMΓ−1DGΓ−1D).

By using this result, vec(ABC) = (C′ ⊗ A)vec B and tr (A′B) = (vec A)′vec B, the second
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term in (D.33) becomes

σ2(vec IT)
′(Im ⊗ (D′Γ−1′GΓ−1D)−1)Dρ[D′Γ−1′(L′ + L)MΓ−1DGΓ−1D]

= σ2(vec IT)
′(Im ⊗ (D′Γ−1′GΓ−1D)−1)

× vec(D′Γ−1′(L′ + L)(L′ + L)MΓ−1DGΓ−1D

− D′Γ−1′(L′ + L)MΓ−1D(L′ + L)MΓ−1DGΓ−1D

− D′Γ−1′(L′ + L)MΓ−1DG(L′ + L)Γ−1D− 2D′Γ−1′L′LMΓ−1DGΓ−1D)

= σ2(vec IT)
′vec[(D′Γ−1′GΓ−1D)−1(D′Γ−1′(L′ + L)(L′ + L)MΓ−1DGΓ−1D

− D′Γ−1′(L′ + L)MΓ−1D(L′ + L)MΓ−1DGΓ−1D

− D′Γ−1′(L′ + L)MΓ−1DG(L′ + L)Γ−1D− 2D′Γ−1′L′LMΓ−1DGΓ−1D)]

= σ2tr[(D′Γ−1′GΓ−1D)−1(D′Γ−1′(L′ + L)(L′ + L)MΓ−1DGΓ−1D

− D′Γ−1′(L′ + L)MΓ−1D(L′ + L)MΓ−1DGΓ−1D

− D′Γ−1′(L′ + L)MΓ−1DG(L′ + L)Γ−1D− 2D′Γ−1′L′LMΓ−1DGΓ−1D)]. (D.36)

Hence, by adding the results in (D.34) and (D.36), we get

DρR2

= σ2(vec IT)
′(D′Γ−1′GMΓ−1D(L′ + L)Γ−1D⊗ Im)Dρ[(D′Γ−1′GΓ−1D)−1]

+ σ2(vec IT)
′(Im ⊗ (D′Γ−1′GΓ−1D)−1)Dρ[D′Γ−1′(L′ + L)MΓ−1DGΓ−1D]

= σ2tr [(D′Γ−1′GΓ−1D)−1(D′Γ−1′(L′ + L)GΓ−1D + D′Γ−1′G(L′ + L)Γ−1D)

× (D′Γ−1′GΓ−1D)−1D′Γ−1′(L′ + L)MΓ−1DGΓ−1D

+ (D′Γ−1′GΓ−1D)−1(D′Γ−1′(L′ + L)(L′ + L)MΓ−1DGΓ−1D

− D′Γ−1′(L′ + L)MΓ−1D(L′ + L)MΓ−1DGΓ−1D

− D′Γ−1′(L′ + L)MΓ−1DG(L′ + L)Γ−1D− 2D′Γ−1′L′LMΓ−1DGΓ−1D)] = r2, (D.37)

which establishes (b). �

E Proofs

In this section, for clarity, Γ(1), Γ(ρ0), L(1) and L(ρ0) will be denoted Γ1, Γ0, L1 and L0,

respectively. Define φ0(r) = exp(rαc0) and ρ = exp(cN−ηT−γ) = exp(cT−1α) for some
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c ∈ C. Lemma E.1 is stated in terms of the following quantities:

h0 = [φ0(2)− 1− 2αc0]/(4α2c2
0),

hj(c) = hj1 + (c0 − c)αhj2 + (c0 − c)2α2hj3

for j ∈ {1, ..., 5} with

h11 = 1− c0α + c2
0α2/3,

h12 = 1− 2c0α/3,

h13 = 1/3,

h21 = 1/2− c0α/3,

h22 = [2c3
0α3 + 6(φ0(1)− 1)− 3c0α(1 + φ0(1))]/(3c3

0α3),

h23 = [6− 3c2
0α2 − 2c3

0α3 + 6(c0α− 1)φ0(1)]/(6c4
0α4),

h31 = [2c3
0α3 − 12c0αφ0(1)(φ0(1)− 1) + 12(φ0(1)− 1)2 + 3c2

0α2(φ0(2)− 1)]/(6c3
0α3),

h32 = 2[−2c3
0α3 − 3c2

0α2φ0(2)− 6φ0(1)(φ0(1)− 1) + c0α(3− 6φ0(1) + 9φ0(2))]/(6c4
0α4),

h33 = [−3 + 3c2
0α2 + 2c3

0α3 + 3(c0α− 1)2φ0(2)]/(6c5
0α5),

h41 = [c3
0α3 + 6(φ0(1)− 1)− 3c0α(1 + φ0(1))]/(3c3

0α3),

h42 = −[2α3c3
0 + 24(φ0(1)− 1) + 3α2c2

0(1 + φ0(1))− 6αc0(1 + 3φ0(1))]/(3α4c4
0),

h43 = [−12 + 3c2
0α2 + c3

0α3 + 3(c0α− 2)2φ0(1)]/(2c5
0α5),

h51 = 1/3,

h52 = [6− 3c2
0α2 − 2c3

0α3 + 6(c0α− 1)φ0(1)]/(3c4
0α4),

h53 = [−3 + 6αc0 + 6α2c2
0 + 2α3c3

0 − 12αc0φ0(1) + 3φ0(2)]/(6α5c5
0),

which are all O(1).

24



Lemma E.1. Suppose that Dt = (1, t)′. Then, under Assumptions 2 and 3, uniformly in c,

(a) T−2tr (L0L′0) = h0 + O(T−1),

(b) NTQNT =

[
1 0
0 h1(c)

]
+ O(T−1/2),

(c) T−1NTD′Γ−1′L0Γ−1DNT =

[
0 0
0 h2(c)

]
+ O(T−1/2),

(d) T−2NTD′Γ−1′L0L′0Γ−1DNT =

[
0 0
0 h3(c)

]
+ O(T−1/2),

(e) T−2NTD′Γ−1′L0L0Γ−1DNT =

[
0 0
0 h4(c)

]
+ O(T−1/2),

(f) T−2NTD′Γ−1′L′0L0Γ−1DNT =

[
0 0
0 h5(c)

]
+ O(T−1/2),

where NT = diag(1, T−1/2).

Proof: Consider (a). From the definition of αq, ρ0 = exp(c0N−ηT−γ) = exp(T−1αc0). By

using this result and the fact that |tT−1 − r| = O(T−1), we can show that | exp(tT−1) −

exp(r)| = O(T−1) uniformly in t and r ∈ [0, 1] (see, for example, Moon and Phillips, 2000,

page 992). Hence, letting t = brTc and φ0(r) = exp(rαc0), we have

ρt
0 = exp(T−1tαc0) = φ0(r) + O(T−1), (E.38)

and so

T−2tr (L0L′0) =
1

T2

T−2

∑
t=0

(T − t− 1)ρ2t
0 =

∫ 1

r=0
(1− r)φ0(2r)dr + O(T−1)

= h0 + O(T−1), (E.39)

where by Taylor expansion of the type exp(x) = ∑∞
j=0 xj/j!,

h0 = [φ0(2)− 1− 2αc0]/(4α2c2
0) =

1
4α2c2

0

(
∞

∑
j=0

(2αc0)j

j!
− 1− 2αc0

)

=
∞

∑
j=0

(2αc0)j

(j + 2)!
. (E.40)

According to the ratio test, if limj→∞ |aj+1/aj| < 1, then ∑∞
j=0 aj is convergent. Hence, since∣∣∣∣∣ (αc0)j+1/(j + 1 + k)!

(αc0)j/(j + k)!

∣∣∣∣∣ =
∣∣∣∣∣ (j + k)!(αc0)j+1

(j + 1 + k)!(αc0)j

∣∣∣∣∣ ≤
∣∣∣∣∣ 1
(j + 1 + k)

∣∣∣∣∣|αc0| → 0

as j → ∞ for α = O(1) and any finite k, ∑∞
j=0(αc0)j/(j + k)! converges. It follows that under

these conditions, h0 = O(1). Regardless, we have

T−2tr (L0L′0) = h0 + O(T−1), (E.41)
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which holds uniformly in c, because the remainder only depends on c0. This establishes (a).

The result in (b) requires more work. We start by noting that Γ−1 = Γ−1
0 + (ρ0 − ρ)J,

leading to the following expression for Q:

Q = D′Γ−1′Γ−1D

= D′Γ−1′
0 Γ−1

0 D + (ρ0 − ρ)(D′Γ−1′
0 JD + D′ J′Γ−1

0 D) + (ρ0 − ρ)2D′ J′ JD. (E.42)

Note how

Γ−1
0 = IT − ρ0 J = IT − J − (ρ0 − 1)J = Γ−1

1 − (ρ0 − 1)J, (E.43)

where Γ−1
1 = Γ(1)−1 = IT − J. This means that

D′Γ−1′
0 Γ−1

0 D = D′[Γ−1
1 − (ρ0 − 1)J]′[Γ−1

1 − (ρ0 − 1)J]D

= D′Γ−1′
1 Γ−1

1 D− (ρ0 − 1)(D′ J′Γ−1
1 D + D′Γ−1′

1 JD) + (ρ0 − 1)2D′ J′ JD.

It is convenient to define et = (0, ..., 0, 1, 0, ..., 0)′, where the one sits at position t, and

Et = 1T − et = (1, ..., 1, 0, 1, ..., 1)′. In this notation,

NTD′Γ−1′
1 Γ−1

1 DNT =

[
e′1e1 T−1/2e′11T

T−1/21′Te1 T−11′T1T

]
=

[
1 T−1/2

T−1/2 1

]
,

NTD′ J′Γ−1
1 DNT =

[
E′1e1 T−1/2E′11T

T−1/2t′T J′e1 T−1t′T J′1T

]
=

[
0 T−1/2(T − 1)
0 T−1 ∑T−1

t=1 t

]
=

[
0 T−1/2(T − 1)
0 (T − 1)/2

]
,

and, since J1T = E1,

NTD′ J′ JDNT

=

[
1′T J′ J1T T−1/21′T J′ JtT

T−1/2t′T J′ J1T T−1t′T J′ JtT

]
=

[
E′1E1 T−1/2E′1 JtT

T−1/2t′T J′E1 T−1t′T J′ JtT

]
=

[
T − 1 T−1/2 ∑T−1

t=1 t
T−1/2 ∑T−1

t=1 t T−1 ∑T−1
t=1 t2

]
=

[
T − 1

√
T(T − 1)/2√

T(T − 1)/2 (T − 1)[2(T − 1) + 1]/6

]
.

By using these results and the fact that exp(x) = 1 + x + O(x2), we obtain

NTD′Γ−1′
0 Γ−1

0 DNT = D′Γ−1′
1 Γ−1

1 D− (ρ0 − 1)(D′ J′Γ−1
1 D− D′Γ−1′

1 JD) + (ρ0 − 1)2D′ J′ JD

= NTD′Γ−1′
1 Γ−1

1 DNT − c0αT−1NT(D′ J′Γ−1
1 D + D′Γ−1′

1 JD)NT

+ c2
0α2T−2NTD′ J′ JDNT + O(α2T−1) + O(α3T−1). (E.44)
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A word on the order of the remainder. Note how T−1‖NT(D′ J′Γ−1
1 D − D′Γ−1′

1 JD)NT‖ =

O(1). The first of the two order terms is due to the error caused by the Taylor approximation

of (ρ0 − 1), which is

O(α2T−2)‖NT(D′ J′Γ−1
1 D− D′Γ−1′

1 JD)NT‖ = O(α2T−1).

The second order term is due to the approximation of (ρ0 − 1)2, which leads to an error

whose order is of the form

O(α2(αT−1 + α2T−2 + ...)) = O(α2T−1(α + α2T−1 + α3T−2 + ...)) = O(α3T−1),

where the last equality holds, because αT−1/2 = O(T−1/2) = o(1). But then O(α2T−1) +

O(α3T−1) = O(T−1), and so

NTD′Γ−1′
0 Γ−1

0 DNT = D′Γ−1′
1 Γ−1

1 D− (ρ0 − 1)(D′ J′Γ−1
1 D− D′Γ−1′

1 JD) + (ρ0 − 1)2D′ J′ JD

= NTD′Γ−1′
1 Γ−1

1 DNT − c0αT−1NT(D′ J′Γ−1
1 D + D′Γ−1′

1 JD)NT

+ c2
0α2T−2NTD′ J′ JDNT + O(T−1). (E.45)

Many of the terms that we will be considering have the same form as NTD′Γ−1′
0 Γ−1

0 DNT. The

evaluation of the remainder in these expressions will therefore be very similar to the one just

given.

The above results for NTD′Γ−1′
1 Γ−1

1 DNT, NTD′ J′Γ−1
1 DNT and NTD′ J′ JDNT imply

NTD′Γ−1′
1 Γ−1

1 DNT = I2 + O(T−1/2),

T−1NTD′ J′Γ−1
1 DNT =

[
0 0
0 1/2

]
+ O(T−1/2),

T−2NTD′ J′ JDNT =

[
0 0
0 1/3

]
+ O(T−1/2).

Direct insertion in the expression for NTD′Γ−1′
0 Γ−1

0 DNT yields

NTD′Γ−1′
0 Γ−1

0 DNT

= NTD′Γ−1′
1 Γ−1

1 DNT − c0αT−1NT(D′ J′Γ−1
1 D + D′Γ−1′

1 JD)NT

+ c2
0α2T−2NTD′ J′ JDNT + O(T−1)

=

[
1 0
0 1− c0α + c2

0α2/3

]
+ O(T−1/2). (E.46)
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Next, consider NT(D′Γ−1′
0 JD + D′ J′Γ−1

0 D)NT. By using Γ−1
0 = Γ−1

1 − (ρ0− 1)J, Taylor ex-

pansion of ρ0 around unity, and the above results for NTD′ J′Γ−1
1 DNT and T−2NTD′ J′ JDNT,

T−1NTD′Γ−1′
0 JDNT = T−1NTD′Γ−1′

1 JDNT − (ρ0 − 1)T−1NTD′ J′ JDNT

= T−1NTD′Γ−1′
1 JDNT − c0αT−2NTD′ J′ JDNT + O(T−1)

=

[
0 0
0 1/2− c0α/3

]
+ O(T−1/2). (E.47)

In view of (ρ0 − ρ) = (c0 − c)αT−1 + O(T−2), the above results imply

NTQNT

= NTD′Γ−1′
0 Γ−1

0 DNT + (ρ0 − ρ)NT(D′Γ−1′
0 JD + D′ J′Γ−1

0 D)NT + (ρ0 − ρ)2NTD′ J′ JDNT

= NTD′Γ−1′
0 Γ−1

0 DNT + (c0 − c)αT−1NT(D′Γ−1′
0 JD + D′ J′Γ−1

0 D)NT

+ (c0 − c)2α2T−2NTD′ J′ JDNT + O(T−1)

= Q + O(T−1/2). (E.48)

The remainder here is not independent of c. However, the part of the remainder that drives

its order is independent of c. Therefore, the result holds uniformly in c (see, for example,

Moon and Phillips, 2004, Proof of Lemma 3).

Let us now consider (c). We have

D′Γ−1′L0Γ−1D = D′Γ−1′
0 L0Γ−1

0 D + (ρ0 − ρ)(D′Γ−1′
0 L0 JD + D′ J′L0Γ−1

0 D)

+ (ρ0 − ρ)2D′ J′L0 JD. (E.49)

Direct calculations reveal that

T−2NTD′Γ−1′
1 L0 JDNT

=

[
T−2e′1L0E1 T−5/2e′1L0 JtT

T−5/2E′1L0E1 T−3E′1L0 JtT

]
=

[
0 0

T−5/2 ∑T−3
t=0 ∑t

s=0 ρs
0 T−3 ∑T−2

t=1 ∑t
s=0(t− s)ρs

0

]
=

[
0 0
0
∫ 1

r=0

∫ r
u=0(r− u)φ0(u)dudr

]
+ O(T−1/2)

=

[
0 0
0 −[2 + 2c0α + c2

0α2 − 2φ0(1)]/(2c3
0α3)

]
+ O(T−1/2),
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and

T−3NTD′ J′L0 JDNT

=

[
T−3E′1L0E1 T−7/2E′1L0 JtT

T−7/2t′T J′L0E1 T−4t′T J′L0 JtT

]
=

[
T−3 ∑T−3

t=0 ∑t
s=0 ρs

0 T−7/2 ∑T−2
t=1 ∑T−2−t

s=0 tρs
0

T−7/2 ∑T−1
t=2 ∑t−2

s=0 tρs
0 T−4 ∑T−2

t=1 ∑T−2−t
s=0 t(t + 1 + s)ρs

0

]
=

[
0 0
0
∫ 1

r=0

∫ 1−r
u=0 r(r + u)φ0(u)dudr

]
+ O(T−1/2)

=

[
0 0
0 [6− 3c2

0α2 − 2c3
0α3 + 6(c0α− 1)φ0(1)]/(6c4

0α4)

]
+ O(T−1/2).

Therefore, since Γ−1
0 = Γ−1

1 − (ρ0 − 1)J and (ρ0 − 1) = c0αT−1 + O(T−2),

T−2NTD′ J′L′0Γ−1
0 DNT

= T−2NTD′ J′L′0Γ−1
1 DNT − c0αT−3NTD′ J′L′0 JDNT + O(T−1)

=

[
0 0
0 [c3

0α3 + 6(φ0(1)− 1)− 3c0α(1 + φ0(1))]/(3c3
0α3)

]
+ O(T−1/2). (E.50)

For T−1NTD′Γ−1′L0Γ−1DNT, we use the fact that JΓ = L, implying L0Γ−1
0 = J. Hence, in

view of (E.47),

T−1NTD′Γ−1′
0 L0Γ−1

0 DNT = T−1NTD′Γ−1′
0 JDNT,

which is known from before. Insertion and simplification now yields

T−1NTD′Γ−1′L0Γ−1DNT

= T−1NTD′Γ−1′
0 L0Γ−1

0 DNT + (ρ0 − ρ)T−1NT(D′Γ−1′
0 L0 JD + D′ J′L0Γ−1

0 D)NT

+ (ρ0 − ρ)2T−1NTD′ J′L0 JDNT

= T−1NTD′Γ−1′
0 L0Γ−1

0 DNT + (c0 − c)αT−2NT(D′Γ−1′
0 L0 JD + D′ J′ JD)NT

+ (c0 − c)2α2T−3NTD′ J′L0 JDNT + O(T−1)

=

[
0 0
0 h2(c)

]
+ O(T−1/2), (E.51)
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which holds uniformly in c. Recall φ0(1) = ∑∞
j=0(αc0)j/j!. Insertion and simplification yields

h22 =
1

3c3
0α3

[2c3
0α3 + 6(φ0(1)− 1)− 3c0α(1 + φ0(1))]

=
1

3c3
0α3

(
2c3

0α3 + 6
∞

∑
j=0

(αc0)j+1

(j + 1)!
− 3c0α

(
1 +

∞

∑
j=0

(αc0)j

j!

))

=
1

3c3
0α3

(
2c3

0α3 + 6
∞

∑
j=0

(αc0)j+3

(j + 3)!
− 3c0α

∞

∑
j=0

(αc0)j+2

(j + 2)!

)

=
1
3

(
2 + 6

∞

∑
j=0

(αc0)j

(j + 3)!
− 3

∞

∑
j=0

(αc0)j

(j + 2)!

)
,

and

h23 =
1

6c4
0α4

[6− 3c2
0α2 − 2c3

0α3 + 6(c0α− 1)φ0(1)]

=
α2

6c4
0α4

(
6− 3c2

0α2 − 2c3
0α3 + 6(c0α− 1)

∞

∑
j=0

(αc0)j

j!

)

=
1

6c4
0α4

(
6c0α

∞

∑
j=0

(αc0)j+3

(j + 3)!
− 6

∞

∑
j=0

(αc0)j+4

(j + 4)!

)

=
∞

∑
j=0

(αc0)j

(j + 3)!
−

∞

∑
j=0

(αc0)j

(j + 4)!
,

which are both O(1). This can be verified by using the ratio test.

For (d), we use

T−2NTD′Γ−1′
0 L0L′0Γ−1

0 DNT

= T−2NTD′Γ−1′
1 L0L′0Γ−1

1 DNT − c0αT−3NT(D′Γ−1′
1 L0L′0 JD + D′ J′L0L′0Γ−1

1 D)NT

+ c2
0α2T−4NTD′ J′L0L′0 JDNT + O(T−1). (E.52)

We start with the first term on the right, which we write as

T−2NTD′Γ−1′L0L′0Γ−1DNT

= T−2NTD′Γ−1′
0 L0L′0Γ−1

0 DNT + (ρ0 − ρ)T−2NT(D′Γ−1′
0 L0L′0 JD + D′ J′L0L′0Γ−1

0 D)NT

+ (ρ0 − ρ)2T−2NTD′ J′L0L′0 JDNT. (E.53)

30



Here

T−4NTD′ J′L0L′0 JDNT

=

[
T−4E′1L0L′0E1 T−9/2E′1L0L′0 JtT

T−9/2t′T J′L0L′0E1 T−5t′T J′L0L′0 JtT

]
=

[
T−4 ∑T−2

t=0 (∑
t
s=0 ρs

0)
2 T−9/2 ∑T−1

t=1 ∑T−t−1
k=0 ∑T−t−1

s=0 (t + k)ρs+k
0

T−9/2 ∑T−1
t=1 ∑T−t−1

k=0 ∑T−t−1
s=0 (t + k)ρs+k

0 T−5 ∑T−1
t=1 [∑

T−t−1
s=0 (t + s)ρs

0]
2

]
=

[
0 0
0
∫ 1

r=0[
∫ 1−r

u=0 (r + u)φ0(u)du]2dr

]
+ O(T−1/2)

=

[
0 0
0 h33

]
+ O(T−1/2),

where

h33 =
1

6c5
0α5

[−3 + 3c2
0α2 + 2c3

0α3 + 3(c0α− 1)2φ0(2)]

=
1

6c5
0α5

(
−3 + 3c2

0α2 + 2c3
0α3 + 3(c0α− 1)2

∞

∑
j=0

(2αc0)j

j!

)

=
1

6c5
0α5

(
3c2

0α2
∞

∑
j=0

(2αc0)j+3

(j + 3)!
− 6c0α

∞

∑
j=0

(2αc0)j+4

(j + 4)!
+ 3

∞

∑
j=0

(2αc0)j+5

(j + 5)!

)

=
1
6

(
3

∞

∑
j=0

(2αc0)j

(j + 3)!
− 6

∞

∑
j=0

(2αc0)j

(j + 4)!
+ 3

∞

∑
j=0

(2αc0)j

(j + 5)!

)
,

which is O(1) under α = O(1). By using this,

T−2NTD′Γ−1′
1 L0L′0Γ−1

1 DNT

=

[
T−2e′1L0L′0e1 T−5/2e′1L0L′0E1

T−5/2E′1L0L′0e1 T−3E′1L0L′0E1

]
=

[
0 0
0 T−3 ∑T−2

t=0 (∑
t
s=0 ρs

0)
2

]
=

[
0 0
0
∫ 1

r=0[
∫ r

u=0 φ0(u)du]2dr

]
+ O(T−1)

=

[
0 0
0 [3 + 2c0α− 4φ0(1) + φ0(2)]/(2c3

0α3)

]
+ O(T−1),
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and

T−3NTD′Γ−1′
1 L0L′0 JDNT

=

[
T−3e′1L0L′0E1 T−7/2e′1L0L′0 JtT

T−7/2E′1L0L′0E1 T−4E′1L0L′0 JtT

]
=

[
0 0

T−7/2 ∑T−2
t=0 (∑

t
s=0 ρs

0)
2 T−4 ∑T−1

t=1 ∑T−t−1
k=0 ∑T−t−1

s=0 (t + k)ρs+k
0

]
=

[
0 0
0
∫ 1

r=0

∫ 1−r
u=0

∫ 1−r
v=0 (r + u)φ0(u + v)dvdudr

]
+ O(T−1/2)

=

[
0 0
0 [c2

0α2 − (φ0(1)− 1)2 + c0α(φ0(1)− 1)2]/(2c4
0α4)

]
+ O(T−1/2),

we obtain

T−2NTD′Γ−1′
0 L0L′0Γ−1

0 DNT

= T−2NTD′Γ−1′
1 L0L′0Γ−1

1 DNT − c0αT−3NT(D′Γ−1′
1 L0L′0 JD + D′ J′L0L′0Γ−1

1 D)NT

+ c2
0α2T−4NTD′ J′L0L′0 JDNT + O(α2

1T−1) + O(α3
1T−1)

=

[
0 0
0 h31

]
+ O(T−1/2), (E.54)

where

h31 = [3 + 2c0α− 4φ0(1) + φ0(2)]/(2c3
0α3)

− 2c0α[c2
0α2 − (φ0(1)− 1)2 + c0α(φ0(1)− 1)2]/(2c4

0α4)

+ c2
0α2[−3 + 3c2

0α2 + 2c3
0α3 + 3(c0α− 1)2φ0(2)]/(6c5

0α5)

= [2c3
0α3 − 12c0αφ0(1)(φ0(1)− 1) + 12(φ0(1)− 1)2 + 3c2

0α2(φ0(2)− 1)]/(6c3
0α3).

The usual approach can be used to show that h31 = O(1) under α = O(1).

The same results can be used to show that

T−3NTD′Γ−1′
0 L0L′0 JD

= T−3NTD′Γ−1′
1 L0L′0 JDNT − (ρ0 − 1)T−3NTD′ J′L0L′0 JDNT

= T−3NTD′Γ−1′
1 L0L′0 JDNT − c0αT−4NTD′ J′L0L′0 JDNT + O(α2

1T−1)

=

[
0 0
0 h32

]
+ O(T−1/2), (E.55)

where

h32 = [c2
0α2 − (φ0(1)− 1)2 + c0α(φ0(1)− 1)2]/(2c4

0α4)

− c0α[−3 + 3c2
0α2 + 2c3

0α3 + 3(c0α− 1)2φ0(2)]/(6c5
0α5)

= [−2c3
0α3 − 3c2

0α2φ0(2)− 6φ0(1)(φ0(1)− 1) + c0α(3− 6φ0(1) + 9φ0(2))]/(6c4
0α4),
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which is again O(1) under α = O(1). Hence, by putting everything together,

T−2NTD′Γ−1′L0L′0Γ−1DNT

= T−2NTD′Γ−1′
0 L0L′0Γ−1

0 DNT + (ρ0 − ρ)T−2NT(D′Γ−1′
0 L0L′0 JD + D′ J′L0L′0Γ−1

0 D)NT

+ (ρ0 − ρ)2T−2NTD′ J′L0L′0 JDNT

= T−2NTD′Γ−1′
0 L0L′0Γ−1

0 DNT + (c0 − c)αT−3NT(D′Γ−1′
0 L0L′0 JD + D′ J′L0L′0Γ−1

0 D)NT

+ (c0 − c)2α2T−4NTD′ J′L0L′0 JDNT + O(T−1)

=

[
0 0
0 h3(c)

]
+ O(T−1/2), (E.56)

uniformly in c.

Next up is (e). We have

T−2NTD′Γ−1′L0L0Γ−1DNT

= T−2NTD′Γ−1′
0 L0L0Γ−1

0 DNT + (ρ0 − ρ)T−2NT(D′Γ−1′
0 L0L0 JD + D′ J′L0L0Γ−1

0 D)NT

+ (ρ0 − ρ)2T−2NTD′ J′L0L0 JDNT

= T−2NTD′Γ−1′
0 L0 JDNT + (ρ0 − ρ)T−2NT(D′Γ−1′

0 L0L0 JD + D′ J′L0 JD)NT

+ (ρ0 − ρ)2T−2NTD′ J′L0L0 JDNT. (E.57)

Here

T−4NTD′ J′L0L0 JDNT

=

[
T−4E′1L0L0E1 T−9/2E′1L0L0 JtT

T−9/2t′T J′L0L0E1 T−5t′T J′L0L0 JtT

]
=

[
T−4 ∑T−3

t=0 ∑t
s=0 ∑T−4−t

k=0 ρs+k
0 T−9/2 ∑T−3

t=1 ∑t
s=0 ∑T−t−4

k=0 (t− k + 1)ρs+k
0

T−9/2 ∑T−2
t=2 ∑T−2

s=t ∑t−2
k=0(s + 1)ρs+k−t

0 T−5 ∑T−2
t=2 ∑T−2

s=t ∑t−1
k=1(s + 1)(t− k)ρs+k−t−1

0

]
=

[
0 0
0
∫ 1

r=0

∫ 1
u=r

∫ r
v=0 u(r− v)φ0(u + v− r)dvdudr

]
+ O(T−1/2)

=

[
0 0
0 h43

]
+ O(T−1/2).

The limit of T−2NTD′Γ−1′
0 L0 JDNT is equal to the limit of T−2NTD′ J′L′0Γ−1

0 DNT, as the latter

has already been shown to be asymptotically symmetric. Hence, since we have already
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evaluated T−3NTD′ J′L0 JDNT, it only remains to consider T−3NTD′Γ−1′
0 L0L0 JDNT. We have

T−3NTD′Γ−1′
1 L0L0 JDNT

=

[
T−3e′1L0L0E1 T−7/2e′1L0L0 JtT

T−7/2E′1L0L0E1 T−4E′1L0L0 JtT

]
=

[
0 0

T−7/2 ∑T−3
t=0 ∑t

s=0 ∑T−4−t
k=0 ρs+k

0 T−4 ∑T−3
t=1 ∑t

s=0 ∑T−t−4
k=0 (t− k + 1)ρs+k

0

]
=

[
0 0
0
∫ 1

r=0

∫ r
u=0

∫ 1−r
v=0 (r− v)φ0(u + v)dvdudr

]
+ O(T−1/2)

=

[
0 0
0 [6− 6φ0(1) + c0α(4 + c0α + 2φ0(1))]/(2c4

0α4)

]
+ O(T−1/2).

Hence, since

[6− 6φ0(1) + c0α(4 + c0α + 2φ0(1))]/(2c4
0α4)− c0αh43

= −[2α3c3
0 + 42(φ0(1)− 1) + 3α2c2

0(1 + 2φ0(1))− 6αc0(2 + 5φ0(1))]/(6α4c4
0),

we obtain

T−3NTD′Γ−1′
0 L0L0 JD

= T−3NTD′Γ−1′
1 L0L0 JDNT − (ρ0 − 1)T−3NTD′ J′L0L0 JDNT

= T−3NTD′Γ−1′
1 L0L0 JDNT − c0αT−4NTD′ J′L0L0 JDNT + O(T−1)

=

[
0 0
0 −[2α3c3

0 + 42(φ0(1)− 1) + 3α2c2
0(1 + 2φ0(1))− 6αc0(2 + 5φ0(1))]/(6α4c4

0)

]
+ O(T−1/2). (E.58)

This implies

T−2NTD′Γ−1′L0L0Γ−1DNT

= T−2NTD′Γ−1′
0 L0 JDNT + (ρ0 − ρ)T−2NT(D′Γ−1′

0 L0L0 JD + D′ J′L0 JD)NT

+ (ρ0 − ρ)2T−2NTD′ J′L0L0 JDNT

= T−2NTD′Γ−1′
0 L0 JDNT + (c0 − c)αT−3NT(D′Γ−1′

0 L0L0 JD + D′ J′L0 JD)NT

+ (c0 − c)2α2T−4NTD′ J′L0L0 JDNT + O(T−1)

=

[
0 0
0 h4(c)

]
+ O(T−1/2), (E.59)

uniformly in c, where h42 in h4(c) is derived from

h42 = −[2α3c3
0 + 42(φ0(1)− 1) + 3α2c2

0(1 + 2φ0(1))− 6αc0(2 + 5φ0(1))]/(6α4c4
0)

+ [6− 3c2
0α2 − 2c3

0α3 + 6(c0α− 1)φ0(1)]/(6c4
0α4)

= −[2α3c3
0 + 24(φ0(1)− 1) + 3α2c2

0(1 + φ0(1))− 6αc0(1 + 3φ0(1))]/(3α4c4
0).
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It remains to consider (f). In the usual fashion, we have

T−2NTD′Γ−1′L′0L0Γ−1DNT

= T−2NTD′Γ−1′
0 L′0L0Γ−1

0 DNT + (ρ0 − ρ)T−2NT(D′Γ−1′
0 L′0L0 JD + D′ J′L′0L0Γ−1

0 D)NT

+ (ρ0 − ρ)2T−2NTD′ J′L′0L0 JDNT

= T−2NTD′ J′ JDNT + (ρ0 − ρ)T−2NT(D′ J′L0 JD + D′ J′L′0 JD)NT

+ (ρ0 − ρ)2T−2NTD′ JL′0L0 JDNT

= T−2NTD′ J′ JDNT + (c0 − c)αT−3NT(D′ J′L0 JD + D′ J′L′0 JD)NT

+ (c0 − c)2α2T−4NTD′ J′L′0L0 JDNT + O(T−1), (E.60)

uniformly in c. All terms here are known, except for T−4NTD′ J′L′0L0 JDNT. A direct calcula-

tion reveals that

T−4NTD′ J′L′0L0 JDNT

=

[
T−4E′1L′0L0E1 T−9/2E′1L′0L0 JtT

T−9/2t′T J′L′0L0E1 T−5t′T J′L′0L0 JtT

]
=

[
T−4 ∑T−3

t=0 (∑
t
s=0 ρs

0)
2 T−9/2 ∑T−3

t=1 ∑t
s=0 ∑t

k=0(t− k + 1)ρs+k
0

T−9/2 ∑T−3
t=1 ∑t

s=0 ∑t
k=0(t− k + 1)ρs+k

0 T−5 ∑T−3
t=1 (∑

t
s=0(t− s + 1)ρs

0)
2

]
=

[
0 0
0
∫ 1

r=0(
∫ r

u=0(r− u)φ0(u)du)2dr

]
+ O(T−1/2)

=

[
0 0
0 h53

]
+ O(T−1/2),

giving

T−2NTD′Γ−1′L′0L0Γ−1DNT =

[
0 0
0 h5(c)

]
+ O(T−1/2). (E.61)

This establishes (f), and hence the proof of Lemma E.1 is complete. �.

Proof of Lemma 1.

From the first-order condition with respect to Sλ we obtain the following slightly modified

expression for Λ̂:

Λ̂ = IT + σ−2Γ−1DŜλD′Γ−1′.

The Woodbury identity states that (A + CBC′)−1 = A−1 − A−1C(B−1 + C′A−1C)−1C′A−1

(see Abadir and Magnus, 2005, Exercise 5.17). Application of this identity to Λ̂−1 yields,
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with K = (σ2Ŝ−1
λ + Q)−1,

Λ̂−1 = IT − Γ−1D(σ2Ŝ−1
λ + Q)−1D′Γ−1′ = IT − Γ−1DKD′Γ−1′,

and therefore

Q∗ = T log(σ2) + log(|Λ̂|) + σ−2tr G− σ−2tr (GΓ−1DKD′Γ−1′),

where G = Γ−1SyΓ−1′ is as before.

Consider σ−2tr (GΓ−1DKD′Γ−1′). Clearly,

Ŝλ = σ2(Γ−1D)−(σ−2G− IT)(Γ−1D)−′

= (D′Γ−1′Γ−1D)−1D′Γ−1′GΓ−1D(D′Γ−1′Γ−1D)−1 − σ2(D′Γ−1′Γ−1D)−1

= Q−1D′Γ−1′GΓ−1DQ−1 − σ2Q−1. (E.62)

By using this and (A + CBC′)−1 = A−1 − A−1C(B−1 + C′A−1C)−1C′A−1,

K = (σ2Ŝ−1
λ + Q)−1 = Q−1 −Q−1(σ−2Ŝλ + Q−1)−1Q−1

= Q−1 − σ2(D′Γ−1′GΓ−1D)−1. (E.63)

Direct insertion now yields

tr (GΓ−1DKD′Γ−1′)

= tr (D′Γ−1′GΓ−1DK) = tr [D′Γ−1′GΓ−1D(Q−1 − σ2(D′Γ−1′GΓ−1D)−1)]

= tr (D′Γ−1′GΓ−1DQ−1)− σ2tr Im = tr (D′Γ−1′GΓ−1DQ−1)− σ2m, (E.64)

where m is the dimension of Dt.

Consider

D′Γ−1′GΓ−1D = D′Γ−1′Γ−1SyΓ−1′Γ−1D. (E.65)

Letting Sε = N−1 ∑N
i=1 ε iε

′
i, Sy can be expanded as follows:

Sy = Γ0SuΓ′0 = Γ0
1
N

N

∑
i=1

(Γ−1
0 Dλi + ε i)(Γ−1

0 Dλi + ε i)
′Γ′0

= σ2
0 Γ0Γ′0 + DSλD′ +

1
N

N

∑
i=1

Dλiε
′
iΓ
′
0 + Γ0

1
N

N

∑
i=1

ε iλ
′
iD
′ + Γ0(Sε − σ2

0 IT)Γ′0. (E.66)
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This implies

D′Γ−1′GΓ−1D

= D′Γ−1′Γ−1SyΓ−1′Γ−1D

= σ2
0 D′Γ−1′Γ−1Γ0Γ′0Γ−1′Γ−1D + D′Γ−1′Γ−1DSλD′Γ−1′Γ−1D

+ D′Γ−1′Γ−1 1
N

N

∑
i=1

Dλiε
′
iΓ
′
0Γ−1′Γ−1D + D′Γ−1′Γ−1Γ0

1
N

N

∑
i=1

ε iλ
′
iD
′Γ−1′Γ−1D

+ D′Γ−1′Γ−1Γ0(Sε − σ2
0 IT)Γ′0Γ−1′Γ−1D

= σ2
0 D′Γ−1′Γ−1Γ0Γ′0Γ−1′Γ−1D + QSλQ + Q

1
N

N

∑
i=1

λiε
′
iΓ
′
0Γ−1′Γ−1D

+ D′Γ−1′Γ−1Γ0
1
N

N

∑
i=1

ε iλ
′
iQ + D′Γ−1′Γ−1Γ0(Sε − σ2

0 IT)Γ′0Γ−1′Γ−1D. (E.67)

and therefore

tr (GΓ−1DKD′Γ−1′) = tr (D′Γ−1′GΓ−1DQ−1)− σ2m

= σ2
0 tr (D′Γ−1′Γ−1Γ0Γ′0Γ−1′Γ−1DQ−1) + tr (QSλ)

+ 2tr

(
D′Γ−1′Γ−1Γ0

1
N

N

∑
i=1

ε iλ
′
i

)
+ tr [D′Γ−1′Γ−1Γ0(Sε − σ2

0 IT)Γ′0Γ−1′Γ−1DQ−1]− σ2m. (E.68)

The same expansion can be used to show that

tr G = tr (Γ−1SyΓ−1′)

= σ2
0 tr (Γ−1Γ0Γ′0Γ−1′) + tr (QSλ) + 2tr

(
Γ−1Γ0

1
N

N

∑
i=1

ε iλ
′
iD
′Γ−1′

)
+ tr [Γ−1Γ0(Sε − σ2

0 IT)Γ′0Γ−1′]. (E.69)

These expressions can be substituted into Q∗, giving, after cancellation of common terms,

Q∗ = T log(σ2) + log(|Λ̂|) + σ−2tr G− σ−2tr (GΓ−1DKD′Γ−1′)

= T log(σ2) + log(|Λ̂|) + σ−2σ2
0 tr (Γ−1Γ0Γ′0Γ−1′)

− σ−2σ2
0 tr (D′Γ−1′Γ−1Γ0Γ′0Γ−1′Γ−1DQ−1)

+ σ−2tr [Γ−1Γ0(Sε − σ2
0 IT)Γ′0Γ−1′]

− σ−2tr [D′Γ−1′Γ−1Γ0(Sε − σ2
0 IT)Γ′0Γ−1′Γ−1DQ−1] + m, (E.70)

where of course Dt = (1, t)′ in the current constant and trend case.
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Consider tr (Γ−1Γ0Γ′0Γ−1′). Note how Γ−1Γ0 = IT + (ρ0 − ρ)L0. Since tr L0 = 0, this

implies

tr (Γ−1Γ0Γ′0Γ−1′) = tr IT + 2(ρ0 − ρ)tr L0 + (ρ0 − ρ)2tr (L0L′0)

= T + (ρ0 − ρ)2tr (L0L′0). (E.71)

Application of Lemma E.1 (a), exp(x) = 1 + x + O(x2), and the fact that α = O(1), now

yields

tr (Γ−1Γ0Γ′0Γ−1′) = T + (ρ0 − ρ)2tr (L0L′0)

= T + (c0 − c)2α2T−2tr (L0L′0) + O(T−1)

= T + (c0 − c)2α2h0 + O(T−1), (E.72)

which holds uniformly in c.

Next, consider tr (D′Γ−1′Γ−1Γ0Γ′0Γ−1′Γ−1DQ−1). Application of Γ−1Γ0 = IT + (ρ0 − ρ)L0

yields

tr (D′Γ−1′Γ−1Γ0Γ′0Γ−1′Γ−1DQ−1)

= tr (D′Γ−1′[IT + (ρ0 − ρ)L0][IT + (ρ0 − ρ)L0]
′Γ−1DQ−1)

= tr (QQ−1) + 2(ρ0 − ρ)tr (D′Γ−1′L0Γ−1DQ−1) + (ρ0 − ρ)2tr (D′Γ−1′L0L′0Γ−1DQ−1)

= 2 + 2(ρ0 − ρ)tr (D′Γ−1′L0Γ−1DQ−1) + (ρ0 − ρ)2tr (D′Γ−1′L0L′0Γ−1DQ−1), (E.73)

According to Lemma E.1 (b), ‖NTQNT − Q‖ = O(T−1/2), where Q = diag[1, h1(c)]. Note

how h1(c) > 0 for all real triplets (α, c0, c), implying Q is positive definite with inverse

Q−1
=

[
1 0
0 1/h1(c)

]
.

Hence, by using the results of Andrews (1987), we can show that

(NTQNT)
−1 = Q−1

+ O(T−1/2), (E.74)
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uniformly in c. By using this and Lemma E.1, we obtain

NTD′Γ−1′Γ−1Γ0Γ′0Γ−1′Γ−1DNT(NTQNT)
−1

= I2 + 2(ρ0 − ρ)NTD′Γ−1′L0Γ−1DNT(NTQNT)
−1

+ (ρ0 − ρ)2NTD′Γ−1′L0L′0Γ−1DNT(NTQNT)
−1

= I2 + 2(c0 − c)αT−1NTD′Γ−1′L0Γ−1DNT(NTQNT)
−1

+ (c0 − c)2α2T−2NTD′Γ−1′L0L′0Γ−1DNT(NTQNT)
−1 + O(T−1)

= I2 + 2(c0 − c)α
[

0 0
0 h2(c)/h1(c)

]
+ (c0 − c)2α2

[
0 0
0 h3(c)/h1(c)

]
+ O(T−1/2)

=

[
1 0
0 1 + 2(c0 − c)αh2(c)/h1(c) + (c0 − c)2α2h3(c)/h1(c)

]
+ O(T−1/2), (E.75)

which again holds uniformly in c. This means that (E.73) can be written as follows:

tr (D′Γ−1′Γ−1Γ0Γ′0Γ−1′Γ−1DQ−1)

= 2 + 2(c0 − c)αh2(c)/h1(c) + (c0 − c)2α2h3(c)/h1(c) + O(T−1/2). (E.76)

Hence, in view of the result previously obtained for tr (Γ−1Γ0Γ′0Γ−1′) (with Dt = (1, t)′), we

obtain

tr (Γ−1Γ0Γ′0Γ−1′)− tr (D′Γ−1′Γ−1Γ0Γ′0Γ−1′Γ−1DQ−1)

= T − 2− 2(c0 − c)αh2(c)/h1(c) + (c0 − c)2α2[h0 − h3(c)/h1(c)] + O(T−1/2)

= T − 2− g(c)/h1(c) + O(T−1/2), (E.77)

uniformly in c, where

g(c) = 2(c0 − c)αh2(c)− (c0 − c)2α2[h0h1(c)− h3(c)]

= (c0 − c)αg1 + (c0 − c)2α2g2 + (c0 − c)3α3g3 + (c0 − c)4α4g4,

with

g1 = 2h21,

g2 = 2h22 − h11h0 + h31,

g3 = 2h23 − h0h12 + h32,

g4 = h33 − h0h13.

This accounts for two of the terms of Q∗ in (E.70).

39



Let us now consider log(|Λ̂|). By Sylvester’s determinant theorem, |Ip + AB| = |Iq + BA|

for any p× q matrix A and q× p matrix B (see Andrews, 1987, Exercise 5.37). This implies

log(|Λ̂|) = log(|IT + σ−2Γ−1DŜλD′Γ−1′|) = log(|I2 + σ−2ŜλD′Γ−1′Γ−1D|)

= log(|I2 + σ−2ŜλQ|). (E.78)

Consider Ŝλ. From

Q−1D′Γ−1′GΓ−1DQ−1

= σ2
0 Q−1D′Γ−1′Γ−1Γ0Γ′0Γ−1′Γ−1DQ−1 + Sλ +

1
N

N

∑
i=1

λiε
′
iΓ
′
0Γ−1′Γ−1DQ−1

+ Q−1D′Γ−1′Γ−1Γ0
1
N

N

∑
i=1

ε iλ
′
i + Q−1D′Γ−1′Γ−1Γ0(Sε − σ2

0 IT)Γ′0Γ−1′Γ−1DQ−1, (E.79)

we get, with σ2 = σ2
0 ,

Ŝλ = Q−1D′Γ−1′GΓ−1DQ−1 − σ2Q−1

= Sλ +
1
N

N

∑
i=1

λiε
′
iΓ
′
0Γ−1′Γ−1DQ−1 + Q−1D′Γ−1′Γ−1Γ0

1
N

N

∑
i=1

ε iλ
′
i

+ Q−1D′Γ−1′Γ−1Γ0(Sε − σ2
0 IT)Γ′0Γ−1′Γ−1DQ−1

+ σ2
0 Q−1(D′Γ−1′Γ−1Γ0Γ′0Γ−1′Γ−1D−Q)Q−1

= Sλ +
1
N

N

∑
i=1

λiε
′
iΓ
′
0Γ−1′Γ−1DNT(NTQNT)

−1NT

+ NT(NTQNT)
−1NTD′Γ−1′Γ−1Γ0

1
N

N

∑
i=1

ε iλ
′
i

+ NT(NTQNT)
−1NTD′Γ−1′Γ−1Γ0(Sε − σ2

0 IT)Γ′0Γ−1′Γ−1DNT(NTQNT)
−1NT

+ σ2
0 NT(NTQNT)

−1NT(D′Γ−1′Γ−1Γ0Γ′0Γ−1′Γ−1D−Q)NT(NTQNT)
−1NT. (E.80)

Consider the second term on the right. By using the fact that Γ−1Γ0 = IT + (ρ0 − ρ)L0, we
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have ∥∥∥∥∥ 1
N

N

∑
i=1

λiε
′
iΓ
′
0Γ−1′Γ−1DNT

∥∥∥∥∥
=

∥∥∥∥∥ 1
N

N

∑
i=1

λiε
′
i[IT + (ρ0 − ρ)L0]

′Γ−1DNT

∥∥∥∥∥
≤

∥∥∥∥∥ 1
N

N

∑
i=1

λiε
′
iΓ
−1DNT

∥∥∥∥∥+ |ρ0 − ρ|
∥∥∥∥∥ 1

N

N

∑
i=1

λiε
′
iL
′
0Γ−1DNT

∥∥∥∥∥
≤ N−1/2

∥∥∥∥∥ 1√
N

N

∑
i=1

λiε
′
iΓ
−1DNT

∥∥∥∥∥
+ N−1/2T|ρ0 − ρ|

∥∥∥∥∥ 1√
NT

N

∑
i=1

λiε
′
iL
′
0Γ−1DNT

∥∥∥∥∥. (E.81)

Consider N−1/2 ∑N
i=1 λiε

′
iΓ
−1DNT. By using E(ε iε

′
i) = σ2

0 IT, the cross-section independence

of ε i, the fact that ε′iΓ
−1DD′Γ−1′ε j is just a scalar, and ‖NTQNT‖ = O(1), we get

E

∥∥∥∥∥ 1√
N

N

∑
i=1

λiε
′
iΓ
−1DNT

∥∥∥∥∥
2


=
1
N

N

∑
i=1

N

∑
j=1

E[tr(NTD′Γ−1′ε iλ
′
iλjε

′
jΓ
−1DNT)]

=
1
N

N

∑
i=1

N

∑
j=1

E(ε′jΓ
−1DNT NTD′Γ−1′ε i)tr(λjλ

′
i)

=
1
N

N

∑
i=1

N

∑
j=1

tr[E(ε iε
′
j)Γ
−1DNT NTD′Γ−1′]tr(λjλ

′
i)

=
1
N

N

∑
i=1

tr[E(ε iε
′
i)Γ
−1DNT NTD′Γ−1′]tr(λiλ

′
i)

= σ2
0 tr(NTD′Γ−1′Γ−1DNT)tr(Sλ) = O(1),

and, by repeated use of the same argument,

E

∥∥∥∥∥ 1√
NT

N

∑
i=1

λiε
′
iL
′
0Γ−1DNT

∥∥∥∥∥
2
 = σ2

0 tr(T−2NTD′Γ−1′L0L′0Γ−1DNT)tr(Sλ),

which is O(1) for tr(T−2NTD′Γ−1′L0L′0Γ−1DNT) is (see Lemma E.1). It follows that since

‖N−1/2 ∑N
i=1 λiε

′
iΓ
−1DNT‖ and ‖N−1/2T−1 ∑N

i=1 λiε
′
iL
′
0Γ−1DNT‖ are both Op(1), and T(ρ0 −
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ρ) = (c0 − c)α + O(T−1), we have∥∥∥∥∥ 1
N

N

∑
i=1

λiε
′
iΓ
′
0Γ−1′Γ−1DNT

∥∥∥∥∥
≤ N−1/2

∥∥∥∥∥ 1√
N

N

∑
i=1

λiε
′
iΓ
−1DNT

∥∥∥∥∥+ N−1/2T|ρ0 − ρ|
∥∥∥∥∥ 1√

NT

N

∑
i=1

λiε
′
iL
′
0Γ−1DNT

∥∥∥∥∥
= Op(N−1/2). (E.82)

We also know that ‖(NTQNT)
−1‖ = O(1) and ‖NT‖ = 1 + T−1/2, and so∥∥∥∥∥ 1

N

N

∑
i=1

λiε
′
iΓ
′
0Γ−1′Γ−1DNT(NTQNT)

−1NT

∥∥∥∥∥
≤ N−1/2

∥∥∥∥∥ 1√
N

N

∑
i=1

λiε
′
iΓ
′
0Γ−1′Γ−1DNT

∥∥∥∥∥‖(NTQNT)
−1‖‖NT‖

= Op(N−1/2). (E.83)

The order of the third term on the right of (E.135) is the same.

Let us now consider the fourth term on the right-hand side of (E.135). Note how

E(‖A(Sε − σ2
0 IT)A′‖2) = E(tr[A(Sε − σ2

0 IT)A′A(Sε − σ2
0 IT)A′])

= E(tr[ASε A′ASε A′ − 2σ2
0 ASε A′AA′ + σ4

0 AA′AA′])

= tr[AE(Sε A′ASε)A′ − 2σ2
0 AE(Sε)A′AA′ + σ4

0 AA′AA′]

= tr[E(ASε A′ASε A′)− σ4
0 AA′AA′]

for any deterministic matrix A. Since ∑N
i=2 = ∑N−1

i=1 = N(N− 1)/2 and tr(Aε iε
′
i A
′Aε iε

′
i A
′) =

(ε′i A
′Aε i)

2, tr[E(ASε A′ASε A′)] can be written

tr[E(ASε A′ASε A′)]

=
1

N2

N

∑
i=1

tr[E(Aε iε
′
i A
′Aε iε

′
i A
′)] +

2
N2

N

∑
i=2

i−1

∑
j=1

tr[AE(ε iε
′
i)A′AE(ε jε

′
j)A′]

=
1

N2

N

∑
i=1

E[(ε′i A
′Aε i)

2] + N−1(N − 1)σ4
0 tr(AA′AA′),

from which it follows that

E(‖A(Sε − σ2
0 IT)A′‖2) =

1
N2

N

∑
i=1

E[(ε′i A
′Aε i)

2]− N−1σ4
0 tr(AA′AA′). (E.84)

Now set A = NTD′Γ−1′Γ−1Γ0. We have shown that ‖NTD′Γ−1′Γ−1Γ0Γ′0Γ−1′Γ−1DNT‖ =

O(1). Therefore, tr(AA′AA′) = ‖AA′‖ = O(1). A tedious yet straightforward calculation
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reveals that N−1 ∑N
i=1 E[(ε′i A

′Aε i)
2] = O(1) (see Proof of Lemma E.2 for a similar calcula-

tion). It follows that

E(‖NTD′Γ−1′Γ−1Γ0(Sε − σ2
0 IT)Γ′0Γ−1′Γ−1DNT‖2) = O(N−1),

and so

‖NTD′Γ−1′Γ−1Γ0(Sε − σ2
0 IT)Γ′0Γ−1′Γ−1DNT‖ = Op(N−1/2). (E.85)

It remains to consider the last term on the right of (E.135). According to Lemma E.1,

NTD′Γ−1′Γ−1Γ0Γ′0Γ−1′Γ−1DNT − NTQNT

= (c0 − c)αT−1NTD′Γ−1′(L0 + L′0)Γ
−1DNT + (c0 − c)2α2T−2NTD′Γ−1′L0L′0Γ−1DNT

=

[
0 0
0 2(c0 − c)αh2(c) + (c0 − c)2α2h3(c)

]
+ O(T−1/2). (E.86)

Hence, since ‖(NTQNT)
−1 −Q−1‖ = O(T−1/2) with Q−1

= diag[1, 1/h1(c)],

(NTQNT)
−1NT(D′Γ−1′Γ−1Γ0Γ′0Γ−1′Γ−1D−Q)NT(NTQNT)

−1

=

[
0 0
0 2(c0 − c)αh2(c)/h1(c)2 + (c0 − c)2α2h3(c)/h1(c)2

]
+ O(T−1/2), (E.87)

from which it follows that

‖NT(NTQNT)
−1NT(D′Γ−1′Γ−1Γ0Γ′0Γ−1′Γ−1D−Q)NT(NTQNT)

−1NT‖

= O(T−1/2). (E.88)

Putting everything together, (E.135) reduces to

Ŝλ = Sλ +
1
N

N

∑
i=1

λiε
′
iΓ
′
0Γ−1′Γ−1DNT(NTQNT)

−1NT

+ NT(NTQNT)
−1NTD′Γ−1′Γ−1Γ0

1
N

N

∑
i=1

ε iλ
′
i

+ NT(NTQNT)
−1NTD′Γ−1′Γ−1Γ0(Sε − σ2

0 IT)Γ′0Γ−1′Γ−1DNT(NTQNT)
−1NT

+ σ2
0 NT(NTQNT)

−1NT(D′Γ−1′Γ−1Γ0Γ′0Γ−1′Γ−1D−Q)NT(NTQNT)
−1NT

= Sλ + Op(N−1/2) + Op(T−1/2), (E.89)

which holds uniformly in c.

Let us now go back to (E.78). We had log(|Λ̂|) = log(|I2 + σ−2ŜλQ|). From |In + A| =

1 + |A| + tr A and |aA| = an|A| for any n × n matrix A (see Abadir and Magnus, 2005,

Exercise 4.35),

log(|Λ̂|) = log(|I2 + σ−2ŜλQ|) = log[1 + σ−4|ŜλQ|+ σ−2tr (ŜλQ)], (E.90)
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and by further use of |AB| = |A‖B| (see Abadir and Magnus, 2005, Exercise 4.42) and

|N−1
T | =

√
T, we obtain

log(|Λ̂|) = log[T−1 + σ−4T−1|ŜλN−1
T (NTQNT)N−1

T |+ σ−2T−1tr (ŜλQ)] + log(T)

= log[T−1 + σ−4T−1|N−1
T |

2|Ŝλ‖NTQNT|+ σ−2T−1tr (ŜλQ)] + log(T)

= log[T−1 + σ−4|Ŝλ‖NTQNT|+ σ−2tr (ŜλT−1Q)] + log(T). (E.91)

Let Sλmn = [Sλ]mn be the element of Sλ that sits in row n and column m. Note how Sλ12 =

Sλ21. In this notation,

tr (ŜλT−1Q) = tr
(

Sλ

[
0 0
0 h1(c)

])
+ Op(N−1/2) + Op(T−1/2)

= Sλ22h1(c) + Op(N−1/2) + Op(T−1/2), (E.92)

uniformly in c. From |In + A| = 1 + |A| + tr A, we have |A + εB| = |A‖In + εA−1B| =

|A|[1 + εn|A−1B|+ ε tr (A−1B)] = |A|+ O(ε) for ε = o(1) and any n× n matrices A and B,

where A is positive definite. This implies

|Ŝλ| = |Sλ|+ Op(N−1/2) + Op(T−1/2), (E.93)

|NTQNT| = h1(c) + O(T−1/2). (E.94)

where |Sλ| = Sλ11Sλ22 − S2
λ12. Insertion yields

log(|Λ̂|)

= log[T−1 + σ−4|Ŝλ‖NTQNT|+ σ−2tr (ŜλT−1Q)] + log(T)

= log[σ−4(Sλ11Sλ22 − S2
λ12)h1(c) + σ−2Sλ22h1(c)] + log(T) + Op(N−1/2) + Op(T−1/2)

= log[σ−4(Sλ11Sλ22 − S2
λ12) + σ−2Sλ22] + log[h1(c)] + log(T)

+ Op(N−1/2) + Op(T−1/2), (E.95)

uniformly in c.

The results used to obtain the above expression for log(|Λ̂|) also imply

tr[D′Γ−1′Γ−1Γ0(Sε − σ2
0 IT)Γ′0Γ−1′Γ−1DQ−1]

= tr[NTD′Γ−1′Γ−1Γ0(Sε − σ2
0 IT)Γ′0Γ−1′Γ−1DNT(NTQNT)

−1]

= Op(N−1/2). (E.96)
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We have now considered all terms in (E.70), except tr [Γ−1Γ0(Sε − σ2
0 IT)Γ′0Γ−1′]. From

Γ−1Γ0 = IT + (ρ0 − ρ)L0,

tr [Γ−1Γ0(Sε − σ2
0 IT)Γ′0Γ−1′]

= tr [(IT + (ρ0 − ρ)L0)(Sε − σ2
0 IT)(IT + (ρ0 − ρ)L0)

′]

= tr (Sε − σ2
0 IT) + 2T(ρ0 − ρ)T−1tr [(Sε − σ2

0 IT)L0]

+ T2(ρ0 − ρ)2T−2tr [L′0(Sε − σ2
0 IT)L0]. (E.97)

The steps used for evaluating E(‖NTD′Γ−1′Γ−1Γ0(Sε − σ2
0 IT)Γ′0Γ−1′Γ−1DNT‖2) can be ap-

plied also to E[(T−1tr [(Sε−σ2
0 IT)L0])2], E[(T−2tr [L′0(Sε−σ2

0 IT)L0])2] and E([tr (Sε−σ2
0 IT)]

2),

the first of which is given by

E[(T−1tr [(Sε − σ2
0 IT)L0])

2] =
1

(NT)2

N

∑
i=1

E[(ε′iε i)(ε
′
iL0L′0ε i)]− N−1T−2σ4

0 tr(L0L′0)

= O(N−1).

Hence, T−1tr [(Sε − σ2
0 IT)L0] = Op(N−1/2) and we can similarly show that T−2tr [(Sε −

σ2
0 IT)L0L′0] is of the same order. By using this and T(ρ0 − ρ) = (c0 − c)α + O(T−1), we

obtain

tr [Γ−1Γ0(Sε − σ2
0 IT)Γ′0Γ−1′]

= tr (Sε − σ2
0 IT) + 2T(ρ0 − ρ)T−1tr [(Sε − σ2

0 IT)L0] + T2(ρ0 − ρ)2T−2tr [L′0(Sε − σ2
0 IT)L0]

= tr (Sε − σ2
0 IT) + 2(c0 − c)αT−1tr [(Sε − σ2

0 IT)L0]

+ (c0 − c)2α2T−2tr [L′0(Sε − σ2
0 IT)L0] + Op(N−1/2T−1)

= tr (Sε − σ2
0 IT) + Op(N−1/2) + Op(T−1), (E.98)

uniformly in c.

We now have all the pieces needed to evaluate Q∗. Direct insertion into (E.70), and using
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σ2 = σ2
0 and Dt = (1, t)′,

Q∗

= T log(σ2) + log(|Λ̂|)

+ σ−2σ2
0 [tr (Γ

−1Γ0Γ′0Γ−1′)− tr (D′Γ−1′Γ−1Γ0Γ′0Γ−1′Γ−1DQ−1)]

+ σ−2tr [Γ−1Γ0(Sε − σ2
0 IT)Γ′0Γ−1′]

− σ−2tr [D′Γ−1′Γ−1Γ0(Sε − σ2
0 IT)Γ′0Γ−1′Γ−1DQ−1] + 2

= T log(σ2) + log[σ−4(Sλ11Sλ22 − S2
λ12) + σ−2Sλ22] + log[h1(c)] + log(T)

+ σ−2σ2
0 (T − 2)− σ−2σ2

0 g(c)/h1(c) + σ−2tr (Sε − σ2
0 IT) + 2 + Op(T−1/2) + Op(N−1/2)

= q(c) + T log(σ2
0 ) + log[σ−4

0 (Sλ11Sλ22 − S2
λ12) + σ−2

0 Sλ22] + log(T) + T

+ σ−2
0 tr (Sε − σ2

0 IT) + Op(T−1/2) + Op(N−1/2), (E.99)

where

q(c) = log[h1(c)]−
g(c)
h1(c)

.

The order of the remainder is again uniform in c. Note also how q(c) is everywhere differ-

entiable, because h1(c) > 0 for all c. It follows that

d
dc

Q∗ =
d
dc

q(c) + Op(T−1/2) + Op(N−1/2). (E.100)

Consider dq(c)/dc. Clearly,

d
dc

h1(c) = −[αh12 + 2(c0 − c)α2h13], (E.101)

d
dc

h2(c) = −[αh22 + 2(c0 − c)α2h23], (E.102)

d
dc

g(c) = −[αg1 + 2(c0 − c)α2g2 + 3(c0 − c)2α3g3 + 4(c0 − c)3α4g4]. (E.103)
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These results yield, after considerable simplification,

d
dc

q(c) =
d
dc

(
log[h1(c)]−

g(c)
h1(c)

)
=

1
h1(c)

d
dc

h1(c)−
1

h1(c)2

(
h1(c)

d
dc

g(c)− g(c)
d
dc

h1(c)
)

= − 1
h1(c)2 (h1(c)[αh12 + 2(c0 − c)α2h13]

− h1(c)[αg1 + 2(c0 − c)α2g2 + 3(c0 − c)2α3g3 + 4(c0 − c)3α4g4]

+ g(c)[αh12 + 2(c0 − c)α2h13])

= − 1
h1(c)2 [αq1 + (c0 − c)α2q2 + (c0 − c)2α3q3 + (c0 − c)3α4q4

+ (c0 − c)4α5q5 + (c0 − c)5α6q6]. (E.104)

where

q1 = h11h12 − h11g1,

q2 = 2h11h13 + h2
12 − 2h11g2 − h12g1 + 2h21h12,

q3 = 3h13h12 − 3h11g3 − 2h12g2 − h13g1 + 2h22h12 + 4h21h13

− h0h11h12 + h12h31,

q4 = 2h2
13 − 4h11g4 − 3h12g3 − 2h13g2 + 2h23h12 + 4h22h13 − h0h2

12,

− 2h0h11h13 + 2h13h31 + 2h32h12,

q5 = −4h12g4 − 3h13g3 + 4h23h13 − h0h13h12 − 2h0h12h13

+ 4h32h13 + h33h12,

q6 = −4h13g4 − 2h0h2
13 + 2h33h13.

The proof is completed by noting that

q1 = h11(h12 − g1) = h11(h12 − 2h21)

= h11[(1− 2c0α/3)− 2(1/2− c0α/3)] = 0. (E.105)

�

Lemma E.2. Suppose that Assumptions 1–5 hold, and Dt = (1, t)′ with α0 ∈ A \ {0} and c0 ∈
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C \ {0}. Then, as N, T → ∞,

(a)
1√
NT

∂`∗(ρ0)

∂ρ
→d N

(
0, lim

N,T→∞
s2

0

)
,

(b)
1√
NT

∂`∗

∂σ2 →d N
(

0,
(κ0 − 1)

4σ4
0

)
,

(c) E
(

1
NT3/2

∂`∗

∂σ2
∂`∗

∂ρ

)
= o(1),

(d)
1

NT2
∂2`∗(ρ0)

(∂ρ)2 →p − lim
N,T→∞

s2
0,

(e)
1

NT3/2
∂2`∗

∂ρ∂σ2 = op(1),

(f)
1

NT
∂2`∗

(∂σ2)2 →p −
1

2σ4
0

,

where s2
0 = s2(ρ0) = T−2tr [(L(ρ0)′ + L(ρ0))MΓ(ρ0)−1DL(ρ0)MΓ(ρ0)−1D].

Proof: In this proof we set θ2 = θ0
2 , and use Γ0 and L0 to denote the true values of Γ and L,

respectively.

Consider (a). We begin by considering the most general case when Dt = (1, t)′. Consider

∂`∗/∂ρ. From G = Γ−1
0 SyΓ−1′

0 = Su,

σ2
0√

NT
∂`∗

∂ρ
=
√

NT−1(R1 + R2), (E.106)

where

R1 = tr (MΓ−1
0 DSu MΓ−1

0 DL0 − σ2
0 L0MΓ−1

0 D),

R2 = tr [σ2
0 (D′Γ−1′

0 SuΓ−1
0 D)−1D′Γ−1′

0 (L0 + L′0)MΓ−1
0 DSuΓ−1

0 D].

Consider R1. Using MΓ−1
0 DΓ−1

0 D = 0T×2 and the definition of Su, we get

MΓ−1
0 DSu MΓ−1

0 D = MΓ−1
0 D

1
N

N

∑
i=1

(Γ−1
0 Dλi + ε i)(Γ−1

0 Dλi + ε i)
′MΓ−1

0 D

= MΓ−1
0 DΓ−1

0 DSλD′Γ−1′
0 MΓ−1

0 D +
1
N

N

∑
i=1

MΓ−1
0 DΓ−1

0 Dλiε
′
i MΓ−1

0 D

+
1
N

N

∑
i=1

MΓ−1
0 Dε iλ

′
iD
′Γ−1′

0 MΓ−1
0 D +

1
N

N

∑
i=1

MΓ−1
0 Dε iε

′
i MΓ−1

0 D

=
1
N

N

∑
i=1

MΓ−1
0 Dε iε

′
i MΓ−1

0 D, (E.107)
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so that

R1 = tr (MΓ−1
0 DSu MΓ−1

0 DL0 − σ2
0 L0MΓ−1

0 D)

=
1
N

N

∑
i=1

tr (MΓ−1
0 Dε iε

′
i MΓ−1

0 DL0 − σ2
0 MΓ−1

0 DL0)

=
1
N

N

∑
i=1

[ε′i MΓ−1
0 DL0MΓ−1

0 Dε i − σ2
0 tr (MΓ−1

0 DL0MΓ−1
0 D)]

=
1
N

N

∑
i=1

(ε′i Aε i − σ2
0 tr A), (E.108)

where A = MΓ−1
0 DL0MΓ−1

0 D. This term is clearly mean zero. For the variance, note how

ε′i Aε i = ∑T
t=1 ∑T

s=1 ε i,tε i,sats, where anm = [A]nm is the element of A that sits in row n and

column m. Recall that κ0 = E(ε4
i,t)/σ4

0 . Since E(ε′i Aε i) = tr [E(ε iε
′
i)A] = σ2

0 tr A, tr A =

∑T
t=1 att and

E(ε′i Aε iε
′
i Aε i) =

T

∑
t=1

T

∑
s=1

T

∑
k=1

T

∑
n=1

E(ε i,tε i,sε i,kε i,n)atsakn

=
T

∑
t=1

E(ε4
i,t)a2

tt +
T

∑
t=1

t−1

∑
n=1

E(ε2
i,t)E(ε2

i,n)attann +
T

∑
t=1

T

∑
n=t+1

E(ε2
i,t)E(ε2

i,n)attann

+
T

∑
t=1

t−1

∑
n=1

E(ε2
i,t)E(ε2

i,n)a2
tn +

T

∑
t=1

T

∑
n=t+1

E(ε2
i,t)E(ε2

i,n)a2
tn

+
T

∑
t=1

t−1

∑
s=1

E(ε2
i,t)E(ε2

i,s)atsast +
T

∑
t=1

T

∑
s=t+1

E(ε2
i,t)E(ε2

i,s)atsast

= σ4
0 (κ0 − 3)

T

∑
t=1

a2
tt + σ4

0

T

∑
t=1

T

∑
n=1

attann + σ4
0

T

∑
t=1

T

∑
n=1

a2
tn + σ4

0

T

∑
t=1

T

∑
n=1

atnant,

we obtain

E(tr [MΓ−1
0 Dε iε

′
i MΓ−1

0 DL0 − σ2
0 MΓ−1

0 D MΓ−1
0 DL0]

2)

= E[(ε′i Aε i − σ2
0 tr A)2]

= E(ε′i Aε iε
′
i Aε i)− 2σ2

0 E(ε′i Aε i)tr A + σ4
0 (tr A)2

= E(ε′i Aε iε
′
i Aε i)− σ4

0 (tr A)2

= σ4
0 (κ0 − 3)

T

∑
t=1

a2
tt + σ4

0

T

∑
t=1

T

∑
n=1

attann + σ4
0

T

∑
t=1

T

∑
n=1

a2
tn + σ4

0

T

∑
t=1

T

∑
n=1

atnant − σ4
0

T

∑
t=1

T

∑
n=1

attann

= σ4
0 (κ0 − 3)

T

∑
t=1

a2
tt + σ4

0

T

∑
t=1

T

∑
n=1

a2
tn + σ4

0

T

∑
t=1

T

∑
n=1

atnant

= σ4
0 (κ0 − 3)tr (A ◦ A) + σ4

0 tr (A′A) + σ4
0 tr (AA), (E.109)
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where ◦ signifies element wise (Hadamard) multiplication. Here,

T−2tr (A′A) = T−2tr (MΓ−1
0 DL′0MΓ−1

0 DL0MΓ−1
0 D)

= T−2tr [(IT − PΓ−1
0 D)L′0(IT − PΓ−1

0 D)L0(IT − PΓ−1
0 D)]

= T−2tr (L′0L0 − L′0L0PΓ−1
0 D − L′0PΓ−1

0 DL0 + L′0PΓ−1
0 DL0PΓ−1

0 D

− PΓ−1
0 DL′0L0 + PΓ−1

0 DL′0L0PΓ−1
0 D + PΓ−1

0 DL′0PΓ−1
0 DL0 − PΓ−1

0 DL′0PΓ−1
0 DL0PΓ−1

0 D)

= T−2tr (L′0L0 − L′0L0PΓ−1
0 D − L0L′0PΓ−1

0 D + L′0PΓ−1
0 DL0PΓ−1

0 D),

T−2tr (AA) = T−2tr (L0L0 − 2L0L0PΓ−1
0 D + L0PΓ−1

0 DL0PΓ−1
0 D).

Moreover, tr (A ◦ A) is dominated by tr (A′A) and tr (AA). In fact, a direct calculation re-

veals that tr (A′A) = O(T), which in turn implies

T−2E(tr [MΓ−1
0 Dε iε

′
i MΓ−1

0 DL0 − σ2
0 MΓ−1

0 D MΓ−1
0 DL0]

2)

= σ4
0 T−2[tr (A′A) + tr (AA)] + O(T−1)

= σ4
0 T−2tr [(L′0 + L0)MΓ−1

0 DL0MΓ−1
0 D] + O(T−1)

= σ4
0 T−2tr (L0L′0)− σ4

0 tr [T−2D′Γ−1′
0 (L′0L0 + L0L0)Γ−1

0 DNT(NTQNT)
−1]

− σ4
0 tr [T−2NTD′Γ−1′

0 (L0L′0 + L0L0)Γ−1
0 DNT(NTQNT)

−1]

+ σ4
0 tr [T−1NTD′Γ−1′

0 (L′0 + L0)Γ−1
0 DNT(NTQNT)

−1

× T−1NTD′Γ−1′
0 L0Γ−1

0 DNT(NTQNT)
−1] + O(T−1). (E.110)

We know from Lemma E.1 and Proof of Lemma E.2 that

T−2tr (L0L′0) = h0 + O(T−1),

(NTQNT)
−1 = Q−1

+ O(T−1/2),

T−1NTD′Γ−1′
0 L0Γ−1

0 DNT =

[
0 0
0 h2(c)

]
+ O(T−1/2),

and by the asymptotic symmetry of T−1NTD′Γ−1′
0 L0Γ−1

0 DNT, we also have

T−1NTD′Γ−1′
0 (L0 + L′0)Γ

−1
0 DNT =

[
0 0
0 2h2(c)

]
+ O(T−1/2). (E.111)

Also, using again the results of Lemma E.1,

T−2NTD′Γ−1′
0 (L0L′0 + L0L0)Γ−1

0 DNT =

[
0 0
0 h3(c) + h4(c)

]
+ O(T−1/2), (E.112)

T−2NTD′Γ−1′
0 (L′0L0 + L0L0)Γ−1

0 DNT =

[
0 0
0 h4(c) + h5(c)

]
+ O(T−1/2). (E.113)
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Insertion and simplification yield

T−2tr [(L′0 + L0)MΓ−1
0 DL0MΓ−1

0 D]

= h0 − tr
[

0 0
0 (h4(c) + h5(c))/h1(c)

]
− tr

[
0 0
0 (h3(c) + h4(c))/h1(c)

]
+ tr

[
0 0
0 2h2(c)2/h1(c)2

]
+ O(T−1/2)

= ω2(c) + O(T−1/2), (E.114)

where

ω2(c) = h0 − [h3(c) + 2h4(c) + h5(c)]/h1(c) + 2h2(c)2/h1(c)2,

which is the limiting representation of s2(ρ). Note that this representation only applies in

the Dt = (1, t)′ case. The term we seek is ω2
0 = ω2(c0), which is given by

ω2
0 = h0 − (h31 + 2h41 + h51)/h11 + 2h2

21/h2
11. (E.115)

Further use of the definitions of h0, h11, h21, h31, h41 and h51, and exp(x) = ∑∞
j=0 xj/j! yields

ω2
0

=
1

[4α3c3
0(3− 3αc0 + α2c2

0)
2]
[72− 9αc0 − 30α2c2

0 − 3α3c3
0 + 6α4c4

0 + 3α5c5
0 − 2α6c6

0

+ (−72 + 153αc0 − 132α2c2
0 + 57α3c3

0 − 12α4c4
0 + α5c5

0)φ0(2)]

=
α2c2

0

[6(3− 3αc0 + α2c2
0)

2]

(
30− 54αc0 + 36α2c2

0 − 10α3c3
0 + α4c4

0

+ 48(−72 + 153αc0 − 132α2c2
0 + 57α3c3

0 − 12α4c4
0 + α5c5

0)
∞

∑
j=0

(2αc0)j

(j + 5)!

)

=
α2c2

0

[30(3− 3αc0 + α2c2
0)

2]

(
6 + 36αc0 − 84α2c2

0 + 64α3c3
0 − 19α4c4

0 + 2α5c5
0

+ 240(−72 + 153αc0 − 132α2c2
0 + 57α3c3

0 − 12α4c4
0 + α5c5

0)
∞

∑
j=0

(2αc0)j+1

(j + 6)!

)
. (E.116)
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It follows that

E[(
√

NT−1R2
1)

=
1

NT2

N

∑
i=1

N

∑
j=1

E(tr [MΓ−1
0 Dε iε

′
j MΓ−1

0 DL0 − σ2
0 MΓ−1

0 D MΓ−1
0 DL0]

2)

=
1

NT2

N

∑
i=1

N

∑
j=1

E[(ε′i Aε i − σ2
0 tr A)(ε′j Aε j − σ2

0 tr A)]

=
1

NT2

N

∑
i=1

E[(ε′i Aε i − σ2
0 tr A)2] +

2
NT2

N

∑
i=2

i−1

∑
j=1

E(ε′i Aε i − σ2
0 tr A)E(ε′j Aε j − σ2

0 tr A)

=
1

NT2

N

∑
i=1

E[(ε′i Aε i − σ2
0 tr A)2] = σ4

0 ω2
0 + O(T−1/2). (E.117)

We want to show that
√

NT−1R1 converges to a normal variate. This is accomplished by

applying Lindeberg central limit theorem for the joint N, T expansion given in Theorem 2

in Phillips and Moon (1999). In the notation of Phillips and Moon (1999), we have ξi,N,T =

T−1(ε′i Aε i − σ2
0 trA). The Lindeberg condition for this variable is given by

1
N

N

∑
i=1

E
(
ξ2

i,N,T
)

1
(
ξ2

i,N,T > Nε
)
= o(1) (E.118)

as N, T → ∞. Observe that ξi,N,T is a function of N, as well. This is so, because it depends

on ρ0 and thus on α = α(N, T) = O(1). Therefore, the convergence explored below holds

for large N and T. Since ξi,N,T is iid across i, the condition simplifies to E(ξ2
1,N,T)1(ξ

2
1,N,T >

Nε) = o(1), which holds if ξ2
1,N,T uniformly integrable over T. Because ξ2

1,N,T ≥ 0, uniform

integrability is equivalent to requiring (i) ξ1,N,T →d ξ1 and (ii) E(ξ2
1,N,T) → E(ξ2

1) (see Moon

and Phillips, 2000, page 791). We start by verifying (i). Let d = (d1, ..., dT)
′ = Γ−1

0 D =

(IT − ρ0 J)(1T, tT) = (1T − ρ0E1, tT − ρ0 JtT), where dt = (1, 1)′ for t = 1 and dt = [1− ρ0, t−

ρ0(t− 1)] for t ≥ 2. Let us also introduce ε∗i = MΓ−1
0 Dε i, the t-th element of which is given by

ε∗i,t = ε i,t − δ̂′dt, where δ̂ = Q−1D′Γ−1′
0 ε i. Note how

N−1
T δ̂ = (NTQNT)

−1NTD′Γ−1′
0 ε i = (NTQNT)

−1
[

(1T − ρ0E1)
′ε i

T−1/2(tT − ρ0 JtT)
′ε i

]
,
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where

(1T − ρ0E1)
′ε i = (1T − E1)

′ε i − (ρ0 − 1)E′1ε i

= (1T − E1)
′ε i − c0αT−1E′1ε i + Op(T−3/2)

= (1T − E1)
′ε i + Op(T−1/2) = ε i,1 + Op(T−1/2),

T−1/2(tT − ρ0 JtT)
′ε i = T−1/2(tT − JtT)

′ε i − T−1/2(ρ0 − 1)(JtT)
′ε i

= T−1/2[(IT − J)tT]
′ε i − c0αT−3/2(JtT)

′ε i + Op(T−1)

= T−1/21′Tε i − c0αT−3/2t′T J′ε i + Op(T−1)

= T−1/2
T

∑
t=1

ε i,t − c0αT−3/2
T

∑
t=1

(t− 1)ε i,t + Op(T−1).

We also have

T−1/2
t

∑
n=1

ε i,n →w σ0Wi(r)

as T → ∞, where→w signifies weak convergence and Wi(r) is a standard Brownian motion.

It follows that

N−1
T δ̂ =

[
ε i,1

(T−1/2 ∑T
t=1 ε i,t − c0αT−3/2 ∑T

t=1(t− 1)ε i,t)/h1(c)

]
+ Op(T−1)

→w

[
ε i,1

σ0(Wi(1)− c0α
∫ 1

r=0 rdWi(r))/h1(c)

]

=

[
ε i,1

σ0∇0,i(c)

]
with an obvious definition of ∇0,i(c). Moreover,

T−1/2NT

t

∑
n=1

ρt−n
0 dn = T−1/2NTρt−1

0 d1 + T−1/2NT

t

∑
n=2

ρt−n
0 dn

= T−1/2NT

t

∑
n=2

ρt−n
0 dn + O(T−1/2)

=

[
−(ρ0 − 1)T−1/2 ∑t

n=2 ρt−n
0

T−1 ∑t
n=2 ρt−n

0 [n− ρ0(n− 1)]

]
+ O(T−1/2)

=

[
−c0αT−3/2 ∑t

n=1 ρt−n
0

T−1 ∑t
n=2 ρt−n

0 [n− [1 + c0αT−1 + O(T−2)](n− 1)]

]
+ O(T−1/2)

=

[
−c0αT−3/2 ∑t

n=2 ρt−n
0

T−1 ∑t
n=2 ρt−n

0 − c0αT−2 ∑t
n=2 ρt−n

0 n

]
+ O(T−1/2)

=

[
0

δ0(r)

]
+ O(T−1/2), (E.119)
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where

δ0(r) =
∫ r

u=0
φ0(r− u)du− c0α

∫ r

u=0
uφ0(r− u)du.

Finally,

T−1tr A = T−1tr (MΓ−1
0 DL0MΓ−1

0 D) = T−1tr (L0MΓ−1
0 D)

= T−1tr L0 − T−1tr (L0Γ−1
0 DQ−1D′Γ−1′

0 )

= −tr [T−1NTD′Γ−1′
0 L0Γ−1

0 DNT(NTQNT)
−1]

= −tr
[

0 0
0 h2(c)/h1(c)

]
+ O(T−1/2) = −h2(c)/h1(c) + O(T−1/2)

Hence, we obtain

ξi,N,T = T−1ε′i Aε i − σ2
0 T−1trA = T−1ε′i Aε i + h2(c)/h1(c) + O(T−1/2). (E.120)

Observe that using the structure of L0, we get

T−1ε′i Aε i = T−1
(

MΓ−1
0 Dε i

)′
L0

(
MΓ−1

0 Dε i

)
= T−1ε∗′i L0ε∗i

= T−1
T

∑
t=2

t−1

∑
n=1

ρt−n−1
0 ε∗i,nε∗i,t

= T−1
T

∑
t=2

t−1

∑
n=1

ρt−n−1
0 ε i,nε i,t −

T

∑
t=2

(N−1
T δ̂)′

(
NTT−1/2

t−1

∑
n=1

ρt−n−1
0 dn

)
T−1/2ε i,t

−
T

∑
t=2

(
T−1/2

t−1

∑
n=1

ρt−n−1
0 ε i,n

)
(N−1

T δ̂)′NTT−1/2dt

+
T

∑
t=2

(N−1
T δ̂)′

(
NTT−1/2

t−1

∑
n=1

ρt−n−1
0 dn

)
(N−1

T δ̂)′NTT−1/2dt

= i− ii− iii + iv.

with obvious definitions of i− iv. Clearly,

i→w σ2
0

∫ 1

0
Ji(r)dWi(r), (E.121)

where

Ji(r) =
∫ r

0
φ0(r− u)dWi(u)

is a standard Ornstein-Uhlenbeck process. To proceed, given the results above,

ii→w σ2
0

∫ 1

0
∇0,i(c)δ0(r)dWi(r),
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where, again, ∇0,i(c) =
[
Wi(1)− c0α

∫ 1
0 udWi(u)

]
/h1(c). Such integral exists due to the

same arguments as in (14.3.30) in Davidson (2000), where the integrand includes de-meaned

Brownian motion. For iii, we need some more work. Note that similarly to (E.119) we obtain

NTT−1/2
t

∑
n=1

dn = NTT−1/2d1 + NTT−1/2
t

∑
n=2

dn = NTT−1/2
t

∑
n=2

dn + O(T−1/2)

=

[
−(ρ0 − 1)T−1/2(t− 1)

T−1 ∑t
n=2[n− ρ0(n− 1)]

]
+ O(T−1/2), (E.122)

where

(ρ0 − 1)T−1/2(t− 1) = T−3/2c0αt + O(T−3/2) = O(T−1/2)

because sup1≤t≤T sup(t−1)T−1≤r≤tT−1 |(tT−1)k − rk| = O(T−1) for all k < ∞. Also

T−1
t

∑
n=2

[n− ρ0(n− 1)] = T−1
t

∑
n=2

[n− [1 + c0αT−1 + O(T−2)](n− 1)]

= T−1(t− 1)− c0αT−2
t

∑
n=2

n + O(T−1/2)

= r− c0α
∫ r

0
udu + O(T−1/2) = g0(r) + O(T−1/2).

Combining the results, we obtain

iii =
T

∑
t=2

(
T−1/2

t−1

∑
n=1

ρt−n−1
0 ε i,n

)
(N−1

T δ̂)′NTT−1/2dt

→w σ2
0

∫ 1

0
Ji(r)∇0,i(c)dg0(r)

= σ2
0

∫ 1

0
Ji(r)∇0,i(c)dr− σ2

0 c0α
∫ 1

0
Ji(r)∇0,i(c)rdr (E.123)

using dg0(r) = (1− c0αr)dr in Steltjes integral form. This implies that

iv =
T

∑
t=2

(N−1
T δ̂)′

(
NTT−1/2

t−1

∑
n=1

ρt−n−1
0 dn

)
(N−1

T δ̂)′NTT−1/2dt

→w σ2
0

∫ 1

0
∇0,i(c)2δ(r)dg0(r)

= σ2
0

∫ 1

0
∇0,i(c)2δ(r)dr− σ2

0 c0α
∫ 1

0
∇0,i(c)2δ(r)rdr. (E.124)

Overall

ξi,N,T = T−1ε′i Aε i − σ2
0 T−1trA

→w σ2
0

∫ 1

0
[Ji(r)−∇0,i(c)δ0(r)] dWi(r) + σ2

0 c0α
∫ 1

0

[
Ji(r)∇0,i(c)−∇0,i(c)2δ(r)

]
rdr

+ σ2
0

∫ 1

0

[
∇0,i(c)2δ(r)− Ji(r)∇0,i(c)

]
dr + h2(c)/h1(c) (E.125)
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This establishes condition (i). As for (ii), we have already shown that E(ξ2
i,N,T) = σ4

0 ω2
0 +

O(T−1/2), and it is not difficult to verify that E(ξ2
i ) = σ4

0 ω2
0. This establishes the uniform

integrability of ξ2
i,N,T, and therefore the Lindeberg condition is satisfied. We can therefore

show that

√
NT−1R1 →d N(0, σ4

0 ω2
0) (E.126)

as N, T → ∞. Next, consider R2. Recall that,

Ŝλ = σ2
0 (Γ
−1
0 D)+(σ−2

0 G− IT)(Γ−1
0 D)+′

= (D′Γ−1′
0 Γ−1

0 D)−1D′Γ−1′
0 GΓ−1

0 D(D′Γ−1′
0 Γ−1

0 D)−1 − σ2
0 (D′Γ−1′

0 Γ−1
0 D)−1

= Q−1D′Γ−1′
0 GΓ−1

0 DQ−1 − σ2
0 Q−1

= Q−1D′Γ−1′
0 SuΓ−1

0 DQ−1 − σ2
0 Q−1. (E.127)

By using this and (A + CBC′)−1 = A−1 − A−1C(B−1 + C′A−1C)−1C′A−1,

(σ2
0 Ŝ−1

λ + Q)−1 = Q−1 −Q−1(σ−2Ŝλ + Q−1)−1Q−1

= Q−1 − σ2
0 (D′Γ−1′

0 SuΓ−1
0 D)−1. (E.128)

By using this and MΓ−1
0 DΓ−1

0 D = 0T×2, R2 can be written as

R2 = tr [σ2
0 (D′Γ−1′

0 SuΓ−1
0 D)−1D′Γ−1′

0 (L0 + L′0)MΓ−1
0 DSuΓ−1

0 D]

= tr ([Q−1 − (Q−1 − σ2
0 (D′Γ−1′

0 SuΓ−1
0 D)−1)]D′Γ−1′

0 (L0 + L′0)MΓ−1
0 DSuΓ−1

0 D)

= tr [HD′Γ−1′
0 (L0 + L′0)MΓ−1

0 DSuΓ−1
0 D]

= tr [HD′Γ−1′
0 (L0 + L′0)MΓ−1

0 D(Su − σ2
0 IT)Γ−1

0 D], (E.129)

where

H = Q−1 − (σ2
0 Ŝ−1

λ + Q)−1.

Also,

MΓ−1
0 D(Su − σ2

0 IT)Γ−1
0 D

= MΓ−1
0 DΓ−1

0 DSλD′Γ−1′
0 Γ−1

0 D +
1
N

N

∑
i=1

MΓ−1
0 DΓ−1

0 Dλiε
′
iΓ
−1
0 D

+
1
N

N

∑
i=1

MΓ−1
0 Dε iλ

′
iD
′Γ−1′

0 Γ−1
0 D +

1
N

N

∑
i=1

MΓ−1
0 D(ε iε

′
i − σ2

0 IT)Γ−1
0 D

=
1
N

N

∑
i=1

MΓ−1
0 Dε iλ

′
iQ + MΓ−1

0 D(Sε − σ2
0 IT)Γ−1

0 D, (E.130)
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leading to the following expression for R2:

R2 = tr

(
QH

1
N

N

∑
i=1

D′Γ−1′
0 (L0 + L′0)MΓ−1

0 Dε iλ
′
i

)
+ tr [HD′Γ−1′

0 (L0 + L′0)MΓ−1
0 D(Sε − σ2

0 IT)Γ−1
0 D]

= R21 + R22, (E.131)

with obvious definitions of R21 and R22. Consider R21. We begin by noting how

QHN−1
T = Q[Q−1 − (σ2

0 Ŝ−1
λ + Q)−1]N−1

T = [I2 − (σ2
0 Ŝ−1

λ Q−1 + I2)
−1]N−1

T

= σ2
0 Ŝ−1

λ (σ2
0 Q−1Ŝ−1

λ + I2)
−1Q−1N−1

T = σ2
0 (σ

2
0 Q−1 + Ŝλ)

−1(NTQ)−1, (E.132)

where we have made use of the fact that (In + AB)−1 = In − A(In + BA)−1B for any n× n

matrices A and B.

Now we need to show that Ŝλ is consistent for Sλ. Note that expanding Sy for ρ = ρ0 we

obtain

Sy = Γ0SuΓ′0 = Γ0
1
N

N

∑
i=1

(Γ−1
0 Dλi + ε i)(Γ−1

0 Dλi + ε i)
′Γ′0

= σ2
0 Γ0Γ′0 + DSλD′ +

1
N

N

∑
i=1

Dλiε
′
iΓ
′
0 + Γ0

1
N

N

∑
i=1

ε iλ
′
iD
′ + Γ0(Sε − σ2

0 IT)Γ′0. (E.133)

This implies

D′Γ−1′GΓ−1D

= D′Γ−1′Γ−1SyΓ−1′Γ−1D

= σ2
0 D′Γ−1′Γ−1Γ0Γ′0Γ−1′Γ−1D + D′Γ−1′Γ−1DSλD′Γ−1′Γ−1D

+ D′Γ−1′Γ−1 1
N

N

∑
i=1

Dλiε
′
iΓ
′
0Γ−1′Γ−1D + D′Γ−1′Γ−1Γ0

1
N

N

∑
i=1

ε iλ
′
iD
′Γ−1′Γ−1D

+ D′Γ−1′Γ−1Γ0(Sε − σ2
0 IT)Γ′0Γ−1′Γ−1D

= σ2
0 D′Γ−1′Γ−1Γ0Γ′0Γ−1′Γ−1D + QSλQ + Q

1
N

N

∑
i=1

λiε
′
iΓ
′
0Γ−1′Γ−1D

+ D′Γ−1′Γ−1Γ0
1
N

N

∑
i=1

ε iλ
′
iQ + D′Γ−1′Γ−1Γ0(Sε − σ2

0 IT)Γ′0Γ−1′Γ−1D. (E.134)

Now, a generic minimizer with respect to Sλ, with σ2 = σ2
0 and inserting the true model, is
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given by

Ŝλ = Q−1D′Γ−1′GΓ−1DQ−1 − σ2Q−1

= Sλ +
1
N

N

∑
i=1

λiε
′
iΓ
′
0Γ−1′Γ−1DQ−1 + Q−1D′Γ−1′Γ−1Γ0

1
N

N

∑
i=1

ε iλ
′
i

+ Q−1D′Γ−1′Γ−1Γ0(Sε − σ2
0 IT)Γ′0Γ−1′Γ−1DQ−1

+ σ2
0 Q−1(D′Γ−1′Γ−1Γ0Γ′0Γ−1′Γ−1D−Q)Q−1

= Sλ +
1
N

N

∑
i=1

λiε
′
iΓ
′
0Γ−1′Γ−1DNT(NTQNT)

−1NT

+ NT(NTQNT)
−1NTD′Γ−1′Γ−1Γ0

1
N

N

∑
i=1

ε iλ
′
i

+ NT(NTQNT)
−1NTD′Γ−1′Γ−1Γ0(Sε − σ2

0 IT)Γ′0Γ−1′Γ−1DNT(NTQNT)
−1NT

+ σ2
0 NT(NTQNT)

−1NT(D′Γ−1′Γ−1Γ0Γ′0Γ−1′Γ−1D−Q)NT(NTQNT)
−1NT. (E.135)

Consider the second term on the right. By using the fact that Γ−1Γ0 = [Γ−1
0 + (ρ0 − ρ)J]Γ0 =

IT + (ρ0 − ρ)L0, we have∥∥∥∥∥ 1
N

N

∑
i=1

λiε
′
iΓ
′
0Γ−1′Γ−1DNT

∥∥∥∥∥
=

∥∥∥∥∥ 1
N

N

∑
i=1

λiε
′
i[IT + (ρ0 − ρ)L0]

′Γ−1DNT

∥∥∥∥∥
≤

∥∥∥∥∥ 1
N

N

∑
i=1

λiε
′
iΓ
−1DNT

∥∥∥∥∥+ |ρ0 − ρ|
∥∥∥∥∥ 1

N

N

∑
i=1

λiε
′
iL
′
0Γ−1DNT

∥∥∥∥∥
≤ N−1/2

∥∥∥∥∥ 1√
N

N

∑
i=1

λiε
′
iΓ
−1DNT

∥∥∥∥∥
+ N−1/2T|ρ0 − ρ|

∥∥∥∥∥ 1√
NT

N

∑
i=1

λiε
′
iL
′
0Γ−1DNT

∥∥∥∥∥. (E.136)

Consider N−1/2 ∑N
i=1 λiε

′
iΓ
−1DNT. By using E(ε iε

′
i) = σ2

0 IT, the cross-section independence
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of ε i, the fact that ε′iΓ
−1DD′Γ−1′ε j is just a scalar, and ‖NTQNT‖ = O(1), we get

E

∥∥∥∥∥ 1√
N

N

∑
i=1

λiε
′
iΓ
−1DNT

∥∥∥∥∥
2


=
1
N

N

∑
i=1

N

∑
j=1

E[tr(NTD′Γ−1′ε iλ
′
iλjε

′
jΓ
−1DNT)]

=
1
N

N

∑
i=1

N

∑
j=1

E(ε′jΓ
−1DNT NTD′Γ−1′ε i)tr(λjλ

′
i)

=
1
N

N

∑
i=1

N

∑
j=1

tr[E(ε iε
′
j)Γ
−1DNT NTD′Γ−1′]tr(λjλ

′
i)

=
1
N

N

∑
i=1

tr[E(ε iε
′
i)Γ
−1DNT NTD′Γ−1′]tr(λiλ

′
i)

= σ2
0 tr(NTD′Γ−1′Γ−1DNT)tr(Sλ)

= σ2
0 tr(NTQNT)tr(Sλ) = O(1),

and, by repeated use of the same argument,

E

∥∥∥∥∥ 1√
NT

N

∑
i=1

λiε
′
iL
′
0Γ−1DNT

∥∥∥∥∥
2
 = σ2

0 tr(T−2NTD′Γ−1′L0L′0Γ−1DNT)tr(Sλ),

which is O(1) for tr(T−2NTD′Γ−1′L0L′0Γ−1DNT) is (see Lemma E.1). It follows that since

‖N−1/2 ∑N
i=1 λiε

′
iΓ
−1DNT‖ and ‖N−1/2T−1 ∑N

i=1 λiε
′
iL
′
0Γ−1DNT‖ are both Op(1), and T(ρ0 −

ρ) = (c0 − c)α + O(T−1), we have∥∥∥∥∥ 1
N

N

∑
i=1

λiε
′
iΓ
′
0Γ−1′Γ−1DNT

∥∥∥∥∥
≤ N−1/2

∥∥∥∥∥ 1√
N

N

∑
i=1

λiε
′
iΓ
−1DNT

∥∥∥∥∥+ N−1/2T|ρ0 − ρ|
∥∥∥∥∥ 1√

NT

N

∑
i=1

λiε
′
iL
′
0Γ−1DNT

∥∥∥∥∥
= Op(N−1/2). (E.137)

We also know that ‖(NTQNT)
−1‖ = O(1) and ‖NT‖ = 1 + T−1/2, and so∥∥∥∥∥ 1

N

N

∑
i=1

λiε
′
iΓ
′
0Γ−1′Γ−1DNT(NTQNT)

−1NT

∥∥∥∥∥
≤ N−1/2

∥∥∥∥∥ 1√
N

N

∑
i=1

λiε
′
iΓ
′
0Γ−1′Γ−1DNT

∥∥∥∥∥‖(NTQNT)
−1‖‖NT‖

= Op(N−1/2). (E.138)
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The order of the third term on the right of (E.135) is the same, because it is just the transpose

of the second term.

Let us now consider the fourth term on the right-hand side of (E.135). Note how

E(‖A(Sε − σ2
0 IT)A′‖2) = E(tr[A(Sε − σ2

0 IT)A′A(Sε − σ2
0 IT)A′])

= E(tr[ASε A′ASε A′ − 2σ2
0 ASε A′AA′ + σ4

0 AA′AA′])

= tr[AE(Sε A′ASε)A′ − 2σ2
0 AE(Sε)A′AA′ + σ4

0 AA′AA′]

= tr[E(ASε A′ASε A′)− σ4
0 AA′AA′]

for any deterministic matrix A. Since ∑N
i=2 = ∑N−1

i=1 = N(N− 1)/2 and tr(Aε iε
′
i A
′Aε iε

′
i A
′) =

(ε′i A
′Aε i)

2, tr[E(ASε A′ASε A′)] can be written

tr[E(ASε A′ASε A′)]

=
1

N2

N

∑
i=1

tr[E(Aε iε
′
i A
′Aε iε

′
i A
′)] +

2
N2

N

∑
i=2

i−1

∑
j=1

tr[AE(ε iε
′
i)A′AE(ε jε

′
j)A′]

=
1

N2

N

∑
i=1

E[(ε′i A
′Aε i)

2] + N−1(N − 1)σ4
0 tr(AA′AA′),

from which it follows that

E(‖A(Sε − σ2
0 IT)A′‖2) =

1
N2

N

∑
i=1

E[(ε′i A
′Aε i)

2] + N−1(N − 1)σ4
0 tr(AA′AA′)

− σ4
0 tr(AA′AA′)

=
1

N2

N

∑
i=1

E[(ε′i A
′Aε i)

2]− N−1σ4
0 tr(AA′AA′). (E.139)

Now set A = NTD′Γ−1′Γ−1Γ0. We have shown that ‖NTD′Γ−1′Γ−1Γ0Γ′0Γ−1′Γ−1DNT‖ =

O(1). Therefore, tr(AA′AA′) = ‖AA′‖2 = O(1). A tedious yet straightforward calculation

reveals that N−1 ∑N
i=1 E[(ε′i A

′Aε i)
2] = O(1) (see (E.109) for a similar calculation). It follows

that

E(‖NTD′Γ−1′Γ−1Γ0(Sε − σ2
0 IT)Γ′0Γ−1′Γ−1DNT‖2) = O(N−1),

and so

‖NTD′Γ−1′Γ−1Γ0(Sε − σ2
0 IT)Γ′0Γ−1′Γ−1DNT‖ = Op(N−1/2). (E.140)

It remains to consider the last term on the right of (E.135). According to Lemma E.1 and
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using Γ−1Γ0 = [Γ−1
0 + (ρ0 − ρ)J]Γ0 = IT + (ρ0 − ρ)L0, we obtain

NTD′Γ−1′Γ−1Γ0Γ′0Γ−1′Γ−1DNT − NTQNT

= NTD′Γ−1′(IT + (ρ0 − ρ)(L0 + L′0) + (ρ0 − ρ)2L0L′0)Γ
−1DNT − NTQNT

= (ρ0 − ρ)NTD′Γ−1′(L0 + L′0)DNT + (ρ0 − ρ)2NTD′Γ−1′L0L′0Γ−1DNT

= (c0 − c)αT−1NTD′Γ−1′(L0 + L′0)Γ
−1DNT + (c0 − c)2α2T−2NTD′Γ−1′L0L′0Γ−1DNT

+ O(T−1)

=

[
0 0
0 2(c0 − c)αh2(c) + (c0 − c)2α2h3(c)

]
+ O(T−1/2). (E.141)

Hence, since ‖(NTQNT)
−1 −Q−1‖ = O(T−1/2) with Q−1

= diag[1, 1/h1(c)],

(NTQNT)
−1NT(D′Γ−1′Γ−1Γ0Γ′0Γ−1′Γ−1D−Q)NT(NTQNT)

−1

=

[
0 0
0 2(c0 − c)αh2(c)/h1(c)2 + (c0 − c)2α2h3(c)/h1(c)2

]
+ O(T−1/2), (E.142)

from which it follows that

‖NT(NTQNT)
−1NT(D′Γ−1′Γ−1Γ0Γ′0Γ−1′Γ−1D−Q)NT(NTQNT)

−1NT‖

= O(T−1/2). (E.143)

Putting everything together, (E.135) reduces to

Ŝλ = Sλ +
1
N

N

∑
i=1

λiε
′
iΓ
′
0Γ−1′Γ−1DNT(NTQNT)

−1NT

+ NT(NTQNT)
−1NTD′Γ−1′Γ−1Γ0

1
N

N

∑
i=1

ε iλ
′
i

+ NT(NTQNT)
−1NTD′Γ−1′Γ−1Γ0(Sε − σ2

0 IT)Γ′0Γ−1′Γ−1DNT(NTQNT)
−1NT

+ σ2
0 NT(NTQNT)

−1NT(D′Γ−1′Γ−1Γ0Γ′0Γ−1′Γ−1D−Q)NT(NTQNT)
−1NT

= Sλ + Op(N−1/2) + Op(T−1/2), (E.144)

which holds uniformly in c.

Now, let us go back to QHN−1
T . Consider (Q)−1 and (QNT)

−1. Let Qmn = [Q]mn be the

element of Q that sits in row n and column m. Since Q12 = Q21, we have

Q−1 =
1

Q22Q11 −Q2
12

[
Q22 −Q12
−Q12 Q11

]
=

T−1Q22

T−1(Q22Q11 −Q2
12)

[
1 0
0 0

]
+ O(T−1/2),

where T−1Q22 = h1(c) + O(T−1/2), Q11 = 1 + O(T−1/2) and T−1/2Q12 = O(T−1/2) (see

Proof of Lemma E.1). Hence, letting

Q−1
1 =

[
1 0
0 0

]
,
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we can show that

Q−1 = Q−1
1 + O(T−1/2). (E.145)

We similarly have

(QNT)
−1 =

1
T−1/2(Q22Q11 −Q2

12)

[
T−1/2Q22 −T−1/2Q12
−Q12 Q11

]
=

1
T−1(Q22Q11 −Q2

12)

[
T−1Q22 −T−1Q12
−T−1/2Q12 T−1/2Q11

]
=

1
T−1(Q22Q11 −Q2

12)

[
T−1Q22 0

0 0

]
+ O(T−1/2)

= Q−1
1 + O(T−1/2). (E.146)

This implies

QHN−1
T = σ2

0 H + Op(T−1/2) + Op(N−1/2), (E.147)

where

H = (σ2
0 Q−1

1 + Sλ)
−1Q−1

1 .

A direct calculation reveals that

(σ2
0 S−1

λ Q−1
1 + I2) =

[
1 + σ2

0 Sλ22/|Sλ| 0
−σ2

0 Sλ12/|Sλ| 1

]
, (E.148)

where |Sλ| = Sλ22Sλ11 − S2
λ12. Hence, letting d0 = |σ2

0 S−1
λ Q−1

1 + I2| = 1 + σ2
0 Sλ22/|Sλ|, we

obtain

(σ2
0 S−1

λ Q−1
1 + I2)

−1 =
1
d0

[
1 0

σ2
0 Sλ12/|Sλ| d0

]
, (E.149)

which in turn implies

H = (σ2
0 Q−1

1 + Sλ)
−1Q−1

1 = (σ2
0 S−1

λ Q−1
1 + I2)

−1S−1
λ Q−1

1

=
1
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[
Sλ22 0

σ2
0 Sλ12Sλ22/|Sλ| − d0Sλ12 0

]
=

1
d0|Sλ|

[
Sλ22 0
−Sλ12 0

]
. (E.150)
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The next step in obtaining the variance of R21 is to note that
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0 DNT H′SλH], (E.151)

where H′SλH has the following simple structure:

H′SλH =
Sλ22

d2
0|Sλ|

[
1 0
0 0

]
. (E.152)

By using this result, (NTQNT)
−1 = Q−1

+ O(T−1/2) with Q−1
= diag[1, 1/h1(c)], and

Lemma E.1, we get

T−1NTD′Γ−1′
0 (L0 + L′0)Γ

−1
0 DNT(NTQNT)

−1T−1NTD′Γ−1′
0 (L0 + L′0)Γ
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0 DNT

=
4h2(c)2

h1(c)

[
0 0
0 1

]
+ O(T−1/2), (E.153)

and

T−2NTD′Γ−1′
0 (L0L0 + L0L′0 + L′0L0 + L′0L′0)Γ

−1
0 DNT

=

[
0 0
0 h3(c) + 2h4(c) + h5(c)

]
+ O(T−1/2). (E.154)

Due to the structure of these matrices, it is not difficult to see that
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The same results imply
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which is O(1). By using this and tr (A′B)2 ≤ tr (A′A)tr (B′B) = ‖A‖2‖B‖2 (see Abadir and

Magnus, 2005, Exercise 12.5) and the Cauchy-Schwarz inequality, we have the following:
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which implies that

√
NT−1R21 = Op(N−1/2) + Op(T−1/4). (E.158)

Next up is R22, whose variance can be derived using the same steps as for R1. Specifically,
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letting A = Γ−1
0 DNT H′Q−1D′Γ−1′
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where the fourth equality holds because, again,

E[(ε′i Aε i − σ2
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with the dominated Hadamard product, and the sixth equality holds because MΓ−1
0 DΓ−1

0 D =
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0T×2. Also,

H′Q−1H = H′Q−1
1 H + Op(T−1/2)

=
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[
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This result, together with those for T−2NTD′Γ−1′
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Also, similarly to the previous steps, denoting A = Γ−1
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which, again, comes from the results for T−2NTD′Γ−1′
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Hence, by adding the results for R12 and R22, we have that
√

NT−1R2 is mean zero and with

variance

E[(
√

NT−1R2)
2] = O(T−1/2) + O(N−1), (E.164)

implying
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The results for R1 and R2 imply
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as N, T → ∞. This establishes part (c).
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For (b), since G = Su and MΓ−1
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0 D = MΓ−1
0 D, we have
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Note how tr (MΓ−1
0 D) = tr IT − tr (Γ−1

0 DQ−1D′Γ−1′
0 ) = T −m, implying
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or
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This has the same form as in the above analysis of R1 with A = MΓ−1
0 D. We can therefore use

the same steps to show that
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Because of the heavier normalization with respect to T, earlier tr (A ◦ A) was negligible. This
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The arguments used for establishing the asymptotic normality of (NT)−1/2∂`∗/∂σ2 are the

same as those used in the analysis of R1. We can therefore show that
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as N, T → ∞.

In (c), we show that ∂`∗/∂ρ and ∂`∗/∂σ2 are asymptotically independent. We begin by

noting how
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Letting A1 = MΓ−1
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0 D, the first term on the right becomes

NT−1E(tr [(Sε − σ2
0 IT)MΓ−1

0 D]R1)

= NT−1E(tr [(Sε − σ2
0 IT)MΓ−1

0 D]tr [L0MΓ−1
0 D(Sε − σ2

0 IT)MΓ−1
0 D])

=
1

NT

N

∑
i=1

N

∑
j=1

E[(ε′i A1ε i − σ2
0 tr A1)(ε

′
j A2ε j − σ2

0 tr A2)]

=
1

NT

N

∑
i=1

E[(ε′i A1ε i − σ2
0 tr A1)(ε

′
i A2ε i − σ2

0 tr A2)], (E.175)

where

E[(ε′i A1ε i − σ2
0 tr A1)(ε

′
i A2ε i − σ2

0 tr A2)]

= E(ε′i A1ε iε
′
i A2ε i)− E(ε′i A1ε i)σ

2
0 tr A2 − σ2

0 tr A1E(ε′i A2ε i) + σ4
0 tr A1tr A2

= E(ε′i A1ε iε
′
i A2ε i)− σ4

0 tr A1tr A2. (E.176)

Hence, in analogy with the analysis of R1,

T−1E[(ε′i A1ε i − σ2
0 tr A1)(ε

′
i A2ε i − σ2

0 tr A2)]

= σ4
0 T−1[(κ0 − 3)tr (A1 ◦ A2) + tr (A′1A2) + tr (A1A2)], (E.177)

where tr (A′1A2) = tr (A1A2) = 2tr (MΓ−1
0 DL0MΓ−1

0 D) = O(T). Also, T−1tr (MΓ−1
0 DL0MΓ−1

0 D)

dominates T−1tr (A1 ◦ A2). It follows that

E
(

1
NT3/2

∂`∗

∂σ2
∂`∗

∂ρ

)
=

N
2σ4

0 T3/2
E(tr [(Sε − σ2

0 IT)MΓ−1
0 D]R1)

+ O(T−1/4) + O(N−1/4)

= T−3/2tr (MΓ−1
0 DL0MΓ−1

0 D) + O(T−1/4) + O(N−1/4)

= O(T−1/4) + O(N−1/4). (E.178)

Therefore, N−1/2T−1∂`∗/∂ρ and (NT)−1/2∂`∗/∂σ2 are asymptotically uncorrelated, and hence

independent by (asymptotic) normality. This implies

(NT)−1/2NT
∂`∗

∂θ2
=

[
(NT)−1/2 ∂`∗

∂σ2

N−1/2T−1 ∂`∗

∂ρ

]
→d N

(
02×1,

[
(κ0 − 1)/(4σ4

0 ) 0
0 ω2

0

])
(E.179)
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as N, T → ∞.

For (d), by using the fact that G = Su and MΓ−1
0 DSu MΓ−1

0 D = MΓ−1
0 DSε MΓ−1

0 D, r1 can be

written as

r1 = −σ2
0 tr [(L′0 + L0)MΓ−1

0 DL0MΓ−1
0 D]

− tr [MΓ−1
0 D(G− σ2

0 IT)MΓ−1
0 D(L′0 + L0)MΓ−1

0 D(L′0 + L0)]

+ tr [MΓ−1
0 D(G− σ2

0 IT)MΓ−1
0 DL0(L′0 + 2L0)]

= −σ2
0 tr [(L′0 + L0)MΓ−1

0 DL0MΓ−1
0 D]

− tr [MΓ−1
0 D(Sε − σ2

0 IT)MΓ−1
0 D(L′0 + L0)MΓ−1

0 D(L′0 + L0)]

+ tr [MΓ−1
0 D(Sε − σ2

0 IT)MΓ−1
0 DL0(L′0 + 2L0)].

Now let A = MΓ−1
0 DL0(L′0 + 2L0)MΓ−1

0 D −MΓ−1
0 D(L′0 + L0)MΓ−1

0 D(L′0 + L0)MΓ−1
0 D and apply

the same steps as when evaluating R1 to show that

T−2r1 = −σ2
0 T−2tr [(L′0 + L0)MΓ−1

0 DL0MΓ−1
0 D] + T−2tr [(Sε − σ2

0 IT)A]

= −σ2
0 T−2tr [(L′0 + L0)MΓ−1

0 DL0MΓ−1
0 D] + Op(N−1/2)

= −σ2
0 ω2

0 + Op(T−1/2) + Op(N−1/2). (E.180)

Next up is r2, which we write as

r2 = tr [σ2
0 (D′Γ−1′

0 GΓ−1
0 D)−1(D′Γ−1′

0 (L′0 + L0)GΓ−1
0 D + D′Γ−1′

0 G(L′0 + L0)Γ−1
0 D)

× (D′Γ−1′
0 GΓ−1

0 D)−1D′Γ−1′
0 (L′0 + L0)MΓ−1

0 DGΓ−1
0 D

+ σ2
0 (D′Γ−1′

0 GΓ−1
0 D)−1(D′Γ−1′

0 (L′0 + L0)(L′0 + L0)MΓ−1
0 DGΓ−1

0 D

− D′Γ−1′
0 (L′0 + L0)MΓ−1

0 D(L′0 + L0)MΓ−1
0 DGΓ−1

0 D

− D′Γ−1′
0 (L′0 + L0)MΓ−1

0 DG(L′0 + L0)Γ−1
0 D− 2D′Γ−1′

0 L′0L0MΓ−1
0 DGΓ−1

0 D)]

= σ−2
0 tr [HD′Γ−1′

0 (L′0 + L0)GΓ−1
0 DHD′Γ−1′

0 (L′0 + L0)MΓ−1
0 DGΓ−1

0 D]

+ σ−2
0 tr [HD′Γ−1′

0 G(L′0 + L0)Γ−1
0 DHD′Γ−1′

0 (L′0 + L0)MΓ−1
0 DGΓ−1

0 D]

+ tr [HD′Γ−1′
0 (L′0 + L0)(L′0 + L0)MΓ−1

0 DGΓ−1
0 D]

− tr [HD′Γ−1′
0 (L′0 + L0)MΓ−1

0 D(L′0 + L0)MΓ−1
0 DGΓ−1

0 D]

− tr [HD′Γ−1′
0 (L′0 + L0)MΓ−1

0 DG(L′0 + L0)Γ−1
0 D]

− 2tr (HD′Γ−1′
0 L′0L0MΓ−1

0 DGΓ−1
0 D).
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Further use of MΓ−1
0 DΓ−1

0 D = 0T×2 and G = Su gives

r2 = 2σ−2
0 tr [HD′Γ−1′

0 (L′0 + L0)SuΓ−1
0 DHD′Γ−1′

0 (L′0 + L0)MΓ−1
0 D(Su − σ2

0 IT)Γ−1
0 D]

+ tr [HD′Γ−1′
0 (L′0 + L0)(L′0 + L0)MΓ−1

0 D(Su − σ2
0 IT)Γ−1

0 D]

− tr [HD′Γ−1′
0 (L′0 + L0)MΓ−1

0 D(L′0 + L0)MΓ−1
0 D(Su − σ2

0 IT)Γ−1
0 D]

− tr [HD′Γ−1′
0 (L′0 + L0)MΓ−1

0 D(Su − σ2
0 IT)(L′0 + L0)Γ−1

0 D]

− 2tr [HD′Γ−1′
0 L′0L0MΓ−1

0 D(Su − σ2
0 IT)Γ−1

0 D]. (E.181)

The last four terms on the right-hand side have the same form as R2. We can therefore use

the same steps as before to show that their variances are O(T−1/2) + O(N−1/2) when scaled

by
√

NT−2. It follows that

T−2r2 = 2σ−2
0 T−2tr [HD′Γ−1′

0 (L′0 + L0)SuΓ−1
0 DHD′Γ−1′

0 (L′0 + L0)MΓ−1
0 D(Su − σ2

0 IT)Γ−1
0 D]

+ Op(N−1/2T−1/4) + Op(N−3/4)

= 2σ−2
0 tr [T−1N−1

T HD′Γ−1′
0 (L′0 + L0)SuΓ−1

0 DHN−1
T

× T−1NTD′Γ−1′
0 (L′0 + L0)MΓ−1

0 D(Su − σ2
0 IT)Γ−1

0 DNT] + Op(N−1/2T−1/4)

+ Op(N−3/4)

= 2σ−2
0 tr [T−1H′Q−1D′Γ−1′

0 (L′0 + L0)SuΓ−1
0 DQ−1H

× T−1NTD′Γ−1′
0 (L′0 + L0)MΓ−1

0 D(Su − σ2
0 IT)Γ−1

0 DNT] + Op(N−1/2)

+ Op(T−1/2). (E.182)

From

Su = Γ−1
0 DSλD′Γ−1′

0 +
1
N

N

∑
i=1

Γ−1
0 Dλiε

′
i +

1
N

N

∑
i=1

ε iλ
′
iD
′Γ−1′

0 + Sε,

we get

T−1H′Q−1D′Γ−1′
0 (L′0 + L0)SuΓ−1

0 DQ−1H

= σ2
0 T−1H′Q−1D′Γ−1′

0 (L′0 + L0)Γ−1
0 DSλH

+ σ2
0 T−1H′Q−1D′Γ−1′

0 (L′0 + L0)Γ−1
0 D

1
N

N

∑
i=1

λiε
′
iΓ
−1
0 DQ−1H

+ σ2
0 T−1H′Q−1D′Γ−1′

0 (L′0 + L0)
1
N

N

∑
i=1

ε iλ
′
i H

+ σ2
0 T−1H′Q−1D′Γ−1′

0 (L′0 + L0)SεΓ−1
0 DQ−1H. (E.183)
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Note how λ′i HH′λ′j is a scalar. By using this and some of the previously obtained results, we

can show that

E

∥∥∥∥∥T−1H′Q−1D′Γ−1′
0 (L′0 + L0)

1
N

N

∑
i=1

ε iλ
′
i H

∥∥∥∥∥
2


=
1

(NT)2

N

∑
i=1

N

∑
j=1

tr [H′Q−1D′Γ−1′
0 (L′0 + L0)E(ε iε

′
j)(L′0 + L0)Γ−1

0 DQ−1H]λ′i HH′λj

= σ2
0 N−1tr [H′(NTQ)−1T−2NTD′Γ−1′

0 (L′0L′0 + L′0L0 + L0L′0 + L0L0)Γ−1
0 DNT(QNT)

−1H]

× tr (SλHH′)

= σ2
0 N−1tr [H′Q−1

1 T−2NTD′Γ−1′
0 (L′0L′0 + L′0L0 + L0L′0 + L0L0)Γ−1

0 DNTQ−1
1 H]tr (H′SλH)

+ O(N−1T−1/2)

= O(T−1/2).

Similarly, since ε′iΓ
−1
0 DQ−1HH′Q−1D′Γ−1′

0 ε j is a scalar,

E

∥∥∥∥∥T−1H′Q−1D′Γ−1′
0 (L′0 + L0)Γ−1

0 D
1
N

N

∑
i=1

λiε
′
iΓ
−1
0 DQ−1H

∥∥∥∥∥
2


=
1

(NT)2

N

∑
i=1

N

∑
j=1

tr [H′Q−1D′Γ−1′
0 (L′0 + L0)Γ−1

0 Dλiλ
′
jD
′Γ−1′

0 (L′0 + L0)Γ−1
0 DQ−1H]

× E(ε′iΓ
−1
0 DQ−1HH′Q−1D′Γ−1′

0 ε j)

=
1

(NT)2

N

∑
i=1

N

∑
j=1

tr [H′Q−1D′Γ−1′
0 (L′0 + L0)Γ−1

0 Dλiλ
′
jD
′Γ−1′

0 (L′0 + L0)Γ−1
0 DQ−1H]

× tr [Γ−1
0 DQ−1HH′Q−1D′Γ−1′

0 E(ε jε
′
i)]

= σ2
0 N−1tr [T−2H′(NTQ)−1NTD′Γ−1′

0 (L′0 + L0)Γ−1
0 DSλ

× D′Γ−1′
0 (L′0 + L0)Γ−1

0 DNT(QNT)
−1H]tr (H′Q−1H)

= σ2
0 N−1tr [H′Q−1

1 T−2NTD′Γ−1′
0 (L′0 + L0)Γ−1

0 DSλD′Γ−1′
0 (L′0 + L0)Γ−1

0 DNTQ−1
1 H]

× tr (H′Q−1
1 H) + O(N−1T−1/2)

= O(N−1),

where the last equality holds since while we know that tr (H′Q−1
1 H) is equal to a constant,

the other trace converges to one. The proof of this last result is straightforward but tedious,

as we are evaluating the whole of T−2NTD′Γ−1′
0 (L′0 + L0)Γ−1

0 DSλD′Γ−1′
0 (L′0 + L0)Γ−1

0 DNT.
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The same argument can be used to show that

‖T−1H′Q−1D′Γ−1′
0 (L′0 + L0)Γ−1

0 DSλH‖2

= tr [T−2H′(NTQ)−1NTD′Γ−1′
0 (L′0 + L0)Γ−1

0 DSλHH′Sλ

× D′Γ−1′
0 (L′0 + L0)Γ−1

0 DNT(QNT)
−1H]

= tr [T−2H′Q−1
1 NTD′Γ−1′

0 (L′0 + L0)Γ−1
0 DSλHH′Sλ

× D′Γ−1′
0 (L′0 + L0)Γ−1

0 DNTQ−1
1 H] + Op(T−1/2)

= Op(1)

and

‖T−1H′Q−1D′Γ−1′
0 (L′0 + L0)SεΓ−1

0 DQ−1H‖2

= tr [H′NT(NTQNT)
−1T−1NTD′Γ−1′

0 (L′0 + L0)SεΓ−1
0 DNT(NTQNT)

−1NT H

× HNT(NTQNT)
−1NTD′Γ−1′

0 Sε(L′0 + L0)Γ−1
0 DNT(NTQNT)

−1NT H]

= σ4
0 tr [H′NTQ−1T−1NTD′Γ−1′

0 (L′0 + L0)Γ−1
0 DNTQ−1NT H

× HNTQ−1T−1NTD′Γ−1′
0 (L′0 + L0)Γ−1

0 DNTQ−1NT H] + Op(N−1/2) + Op(T−1/2)

= Op(1).

Hence, by collecting the terms,

‖T−1H′Q−1D′Γ−1′
0 (L′0 + L0)SuΓ−1

0 DQ−1H‖ = Op(1). (E.184)

The second matrix product in T−2r2 is T−1NT H−1R2NT. This matrix can be shown to be

Op(N−1/2), implying that T−2r2 reduces to

T−2r2 = 2σ−2
0 tr [T−1H′Q−1D′Γ−1′

0 (L′0 + L0)SuΓ−1
0 DQ−1H

× T−1NTD′Γ−1′
0 (L′0 + L0)MΓ−1

0 D(Su − σ2
0 IT)Γ−1

0 DNT] + Op(N−1/2) + Op(T−1/2)

= Op(N−1/2) + Op(T−1/2). (E.185)

Putting everything together,

1
NT2

∂2`∗

(∂ρ)2 →p −ω2
0, (E.186)

as N, T → ∞. This establishes part (d).
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We move on to consider (e). By using the results obtained for R1,

T−3/2tr (MΓ−1
0 DGMΓ−1

0 DL0)

= T−3/2tr (MΓ−1
0 DSu MΓ−1

0 DL0) = T−3/2tr (MΓ−1
0 DSε MΓ−1

0 DL0)

= σ2
0 T−3/2tr (MΓ−1

0 DL0) + T−3/2tr [MΓ−1
0 D(Sε − σ2

0 IT)MΓ−1
0 DL0]

= Op(T−1/2). (E.187)

Finally, consider (f). By adding and subtracting appropriately, we obtain

1
N

∂2`∗

(∂σ2)2 =
T

2σ4
0
− m

2σ4
0
− σ−6

0 tr (GMΓ−1D)

= − T
2σ4

0
+

m
2σ2

0
+

T
σ4

0
− m

σ4
0
− σ−6

0 tr (GMΓ−1D)

= − T
2σ4

0
+

m
2σ4

0
− 1

σ6
0

(
tr (GMΓ−1D)− σ2

0 (T −m)
)

= − T
2σ4

0
+

m
2σ4

0
− 1

σ6
0

tr [(Sε − σ2
0 IT)MΓ−1

0 D]. (E.188)

This implies that

1
NT

∂2`∗

(∂σ2)2 = − 1
2σ4

0
+

m
2Tσ4

0
− 1

Tσ6
0

tr [(Sε − σ2
0 IT)MΓ−1

0 D]

= = − 1
2σ4

0
− (NT)−1/2

√
N√

Tσ6
0

tr [(Sε − σ2
0 IT)MΓ−1

0 D] + O(T−1)

= − 1
2σ4

0
+ O(T−1) + O((NT)−1/2), (E.189)

because

NT−1E(tr [(Sε − σ2
0 IT)MΓ−1

0 D]
2) = = σ4

0 T−1[(κ0 − 3)tr (A ◦ A) + tr (A′A) + tr (AA)]

= σ4
0 (κ0 − 1) + O(T−1), (E.190)

following steps up to (E.172). �

Proof of Theorem 2.

According to Lemma E.2,

(a) NT
1√
NT

∂`∗(θ0
2)

∂θ2
→d N

(
02×1, lim

N,T→∞

[
(κ0 − 1)/(4σ4

0 ) 0
0 s2

0

])
,

(b) − NT
1

NT
∂2`∗(θ0

2)

∂θ2(∂θ2)′
NT →p lim

N,T→∞

[
1/(2σ4

0 ) 0
0 s2

0

]
,
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where s2
0 = s2(ρ0) = T−2tr [(L(ρ0)′ + L(ρ0))MΓ(ρ0)−1DL(ρ0)MΓ(ρ0)−1D]. Similarly to Norkutė

and Westerlund (2021), we begin by applying the mean value theorem to the score ∂`∗(θ̂2)/∂θ2

around θ̂2 = θ0
2 (see, for example, Newey et al., 1994, page 2141). This gives

02×1 =
∂`∗(θ̂2)

∂θ2
=

∂`∗(θ0
2)

∂θ2
+

∂2`∗(θ2)

∂θ2(∂θ2)′
(θ̂2 − θ0

2), (E.191)

where θ2 lies element-wise between the line segment joining θ̂2 and θ0
2 . Suppose that the

Hessian is invertible. Under this assumption,

√
NTN−1

T (θ̂2 − θ0
2) =

(
−NT

1
NT

∂2`∗(θ2)

∂θ2(∂θ2)′
NT

)−1

NT
1√
NT

∂`∗(θ0
2)

∂θ2

=

(
−NT

1
NT

∂2`∗(θ0
2)

∂θ2(∂θ2)′
NT

)−1

NT
1√
NT

∂`∗(θ0
2)

∂θ2

+

(−NT
1

NT
∂2`∗(θ2)

∂θ2(∂θ2)′
NT

)−1

−
(
−NT

1
NT

∂2`∗(θ0
2)

∂θ2(∂θ2)′
NT

)−1
NT

1√
NT

∂`∗(θ0
2)

∂θ2

=

(
−NT

1
NT

∂2`∗(θ0
2)

∂θ2(∂θ2)′
NT

)−1

NT
1√
NT

∂`∗(θ0
2)

∂θ2
+ op(1), (E.192)

where, again, NT = diag(1, T−1/2). This expansion holds uniformly on Θ2. Here,∥∥∥∥∥NT
1

NT
∂2`∗(θ2)

∂θ2(∂θ2)′
NT − NT

1
NT

∂2`∗(θ0
2)

∂θ2(∂θ2)′
NT

∥∥∥∥∥ = op(1) (E.193)

follows from stochastic equi-continuity (see Newey et al., 1994, page 2137, for a definition).

This can be verified using consistency of θ̂2 and analytical expression of the first and second

order derivatives of `∗(θ2) (see the proof of Theorem 3 in Hayakawa and Pesaran, 2015, for a

similar argument). The result (E.193) holds for the inverses due to the arguments in Andrews

(1987). Moreover, NT
1

NT
∂2`∗(θ0

2)
∂θ2(∂θ2)′

NT converges to a positive definite matrix by Lemma E.2.

Combining the results,

√
NTN−1

T (θ̂2 − θ0
2)→d N

(
02×1, lim

N,T→∞

[
σ4

0 (κ0 − 1) 0
0 1/s2

0

])
as N, T → ∞. �

Proof of Corollary 1.

We need to prove that Lemma E.2 (with obvious changes to the normalization) holds under

the conditions of Corollary 1. The steps are the same as in Proof of Lemma E.2. The details

are omitted but can be obtained upon request from the corresponding author. �
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