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Abstract

We develop a consumption-savings model that distinguishes households’ perceived in-
come uncertainty from income uncertainty as measured by an econometrician. Households
receive signals on their future disposable income that can drive a gap between the two un-
certainties. With an uncertainty gap that is consistent with direct estimates stemming from
subjective income expectations, the model jointly explains three consumption inequality and
insurance measures in US micro data that are not captured without the difference: (i) the
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tion and income growth and (iii) the income-conditional mean of household consumption.
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1 Introduction

What is households’ income uncertainty when they decide about their savings to insure against

undesirable fluctuations of their consumption? The answer to this question is of central im-

portance to understanding consumption risk sharing; only what households don’t know yet

constitutes uncertainty they seek to hedge. Typically, households’ income uncertainty measures

stem from aggregating earnings across household members and income types in the population.

As Browning, Hansen, and Heckman (1999) point out, this procedure may create a disconnect

between the uncertainty as assessed by an econometrician and income uncertainty as perceived

by households. Quantifying households’ perceived income uncertainty is, however, a prerequisite

for evaluating the welfare effects of hotly-debated reforms such as changes in the progressivity

of the tax system. In this paper, we argue that accounting for households’ perceived income

uncertainty is key to understand consumption inequality and insurance of households in the

United States.

We consider an environment in which risk-averse households seek insurance against idiosyn-

cratic fluctuations of their disposable income. As the new element here, we explicitly extend

households’ information set by signals that inform households about their income in the next

period with certain precision. Due to the signals, households’ expectations of future income

are heterogeneous even when current income is the same. While the stochastic income process

constitutes the income uncertainty as assessed by an econometrician, the joint process of signals

and income represents households’ income uncertainty. The difference between the two income

uncertainties depends on the precision of the signals; the more precise are the signals, the smaller

are households’ forecast errors for income growth and the lower is households’ perceived income

uncertainty.

The extension of households’ information set with signals is motivated by a mounting lit-

erature that finds that subjective expectations on future realizations of idiosyncratic risk have

significant predictive power even when other information available to the econometrician is

taken into account.1 Controlling for current realizations of income, Dominitz (1998) estimates

that conditioning additionally on households’ reported subjective expectations significantly re-

duces the forecast error of income growth. Thus, households typically have more information

1 Exemplary papers are Dominitz (1998) and Dominitz and Manski (1997) for income risk, Smith, Taylor, and
Sloan (2001) for predicting mortality risk, Stephens (2004) for unemployment, or Campbell, Carruth, Dickerson,
and Green (2007) for job insecurity.
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than their current income to predict their future earnings. In our environment, we capture this

advance information with informative signals. Correspondingly, the signals collect a wide spec-

trum of information relevant for future changes in disposable income that are already known

to households before the actual change occurs. Examples of this type of foreknowledge are

information on future performance bonuses, promotions, demotions or wage cuts, wage rises,

changes in income taxes and transfers.

In reality, households can smooth income shocks in a variety of ways, involving progres-

sive taxation, family transfers, informal networks or default. To capture these various insur-

ance possibilities, we employ a general-equilibrium model with endogenous solvency constraints

stemming from limited contract enforcement as proposed by Alvarez and Jermann (2000). In

this model, households have access to a full set of securities to capture formal and informal

insurance arrangements with the drawback that the arrangements are not enforceable under all

circumstances.

Existing models of risk sharing without advance information have difficulties capturing con-

sumption inequality and insurance of households in the United States. While standard incom-

plete markets models as pioneered by Aiyagari (1994) tend to predict too little models with

endogenous solvency constraints tend to result in too much consumption smoothing. Employ-

ing US micro data to inform our theoretical model, we find that it can explain consumption

heterogeneity better than existing models that do not account for households perceived income

uncertainty. To the best of our knowledge, it is the first model that jointly matches three distinct

key consumption inequality and insurance measures that are not captured without advance in-

formation: (i) the unconditional variance of households consumption in the cross-section, (ii) the

covariance of current consumption growth and income growth and (iii) the income-conditional

mean of household consumption for six income groups.

To explain these measures, we discover that households have advance information on their

future income such that their income uncertainty is lower than what is typically considered

in consumption risk sharing and insurance models; according to the theoretical model, we

quantify that advance information reduces households’ mean-squared forecast error for income

by approximately 12%. This implies a systematic gap between the income uncertainty as

perceived by households and the income uncertainty as estimated by an econometrician. The

size of the uncertainty gap as quantified by the model is consistent with the direct estimates

of Dominitz (1998) who finds that accounting for households’ subjective income expectations
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reduces the econometrician’s mean-squared forecast error between 12% and 21%.

We show that advance information improves the data fit of the model with endogenous

solvency constraints because more precise signals reduce consumption risk sharing. The mech-

anism for this surprising result is that more precise signals decrease the value of insurance for

high-income households which tightens the solvency constraints of low-income agents and thus

limits opportunities for risk sharing. Consequently, advance information decreases risk sharing.

Similar to Ábrahám and Cárceles-Poveda (2010), we also find that the endogenous solvency

limits are consistent with US data on credit limits. In particular, high-income households face

more generous credit limits than low-income households.

Further, we characterize cross-sectional long-run distributions of consumption, income, and

wealth across households with advance information. As a methodological contribution, we

develop a dynamic stochastic model with an explicit specification of the joint distribution of

income and signals to consistently model the additional predictive power of informative signals

on future realizations of idiosyncratic risk. Consistency implies that the distributions of ex-

pected income and income realizations are aligned. When income is persistent, we show that

consistency requires non-trivial but intuitive assumptions on the stochastic process for signals.

This methodological contribution is general and can be widely applied to individual decision

problems under risk beyond consumption risk sharing. Empirically, Dominitz (1998) and more

recently Attanasio and Augsburg (2016) find that expected income and realized income are

indeed very similar.

For a given size of the uncertainty gap, we analyze the quantitative implications for sev-

eral over-identifying restrictions. Blundell, Pistaferri, and Preston (2008) show that advance

information of the type we consider can result in counterfactual non-zero correlations of current

consumption growth with future income growth in a standard incomplete markets model. With

endogenous solvency constraints, we find that advance information does not induce counterfac-

tual correlations of current consumption with future income growth.

Advance information also improves the fit of the income-conditional distribution of con-

sumption. The model (almost) perfectly tracks the income-conditional mean of consumption of

low, medium and high-income earners. Further, the advance information helps to attenuate a

non-linearity present in limited contract enforcement models without information but absent in

the data. In the absence of information, the limited commitment model implies a variance of

consumption conditional on a high income that is equal to zero. With informative signals, the
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conditional variance is positive, bringing the model closer to the data.

Related literature We are not the first to find that households know more than econome-

tricians about their future earnings.2 The main difference to these papers is that we point out

that the quantitative importance of advance information for consumption risk sharing crucially

depends on the structure of insurance markets. In a standard incomplete markets model with

exogenous solvency constraints, the uncertainty gap has only modest implications for consump-

tion risk sharing. With endogenous solvency constraints, however, the uncertainty gap matters

to understand consumption heterogeneity.

Our paper is closely related to Heathcote, Storesletten, and Violante (2014), Kaplan and

Violante (2010) and Guvenen and Smith (2014) who study the role of advance information in

standard incomplete markets environments with a single non-state contingent bond. Heathcote,

Storesletten, and Violante (2014) consider two different type of shocks, “uninsurable shocks”

and “insurable shocks”. The former shocks can be only partially smoothed while the latter

type of shocks can be interpreted as perfectly forecastable and are completely insured (by

construction). We consider signals on uncertain future income realizations without taking a

stand a priori whether certain shocks are insurable or not. In particular, we highlight that

when households use a large variety of insurance possibilities (and not only a single non-state

contingent bond) perfectly forecastable shocks do not necessarily enhance but may actually

restrict the degree of insurance.

Kaplan and Violante (2010) show that the resulting increase in consumption smoothing in

the standard incomplete markets model with advance information is quantitatively not impor-

tant enough to account for the cross-sectional dispersion of consumption in the data. With our

paper, we clarify that the quantitative effects of advance information on risk sharing depend

on the structure of insurance markets. While we can confirm the earlier findings on advance

information in the standard incomplete markets model, a model with endogenous solvency

constraints bridges the gap to several consumption insurance measures observed in the data.

Guvenen and Smith (2014) study a different type of advance information. In a life-cycle model,

households have initial knowledge about their individual deterministic part of income growth

while we consider households that receive signals every period about future realizations of their

stochastic part of income.

2 Exemplary papers in that literature are Cunha and Heckman (2016), Cunha, Heckman, and Navarro (2005),
Guvenen (2007), Guvenen and Smith (2014), Huggett, Ventura, and Yaron (2006), Primiceri and van Rens (2009).
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Methodologically, our paper draws on Kehoe and Levine (1993), Alvarez and Jermann (2000)

and Krueger and Perri (2006, 2011) who analyze the theoretical and quantitative properties of

constrained efficient allocations with limited contract enforcement. Aiyagari (1994) pioneered

in characterizing invariant distributions of consumption and assets in the standard incomplete

markets model in general equilibrium. Building on these papers, Broer (2013) provides a thor-

ough comparison of the quantitive implications of both consumption risk sharing models to the

data. We extend the limited contract enforcement model and the standard incomplete markets

model with a role for information to study how households’ perceived income uncertainty –

instead of the uncertainty assessed by an econometrician – affects consumption risk sharing of

US households.

Hirshleifer (1971) shows that better information makes risk-averse agents ex-ante worse off

if such information leads to evaporation of risks that otherwise could have been shared in a

competitive equilibrium with full insurance and perfect contract enforcement. Schlee (2001)

provides conditions under which better public information about idiosyncratic risk is undesir-

able. Similar to these authors, we also find that better public information can result in less

risk sharing. The difference is that the negative effect relies on the importance of the limited

enforceability of contracts and arises only when consumption insurance is not full but partial.

If enforcement frictions are absent, information does not affect consumption allocations in the

limited commitment model.

The remainder of the paper is organized as follows. In the next section, we start with a

simple model to analytically show how advance information affects consumption risk sharing

with limited commitment. In Section 3, we present the theoretical model that we take to the

data. Section 4 describes the data and the calibration that we employ in Section 5 to study the

quantitative implications of advance information for risk sharing of US households. The last

section concludes.

2 A simple model with limited commitment

To understand the intuition behind the quantitative results derived later, we provide here an-

alytical results on the effect of advance information on consumption risk sharing with limited

commitment employing an illustrative example. As our main result here, we show that better

information on future income realizations reduces risk sharing.
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Consider a two-period, pure-exchange economy with a continuum of ex-ante identical agents

and a single perishable consumption good. In each period, agent i receives a stochastic labor-

income endowment that can be either high, eh = ē + δe, or low, el = ē − δe, with δe > 0 and

ē as the arithmetic mean of the income process. Both income states are equally likely and the

income realizations are independent across time and agents. In the first period, agents also

receive a public signal ki that informs about their income realizations in the second period.3

Signals are i.i.d. as well and can indicate either a high income (“good” or “high” signals) or

a low income (“bad” or “low” signals) in the future. The signals’ precision κ is defined as the

probability that signal and future income coincide, κ = π(e2 = ej |k = ej), with j ∈ {h, l} and

κ ∈ [1/2, 1]. Uninformative signals are characterized by precision κ = 1/2, perfectly informative

signals by κ = 1.

The preferences of agents are given by the following expected utility function:

E[u(c1) + u(c2)], (1)

where c1 and c2 are consumption in the first and in the second period, respectively, u(c), is

increasing and strictly concave. We measure social welfare according to (1), i.e., as agents’

expected utility before any risk has been resolved.

If the agents are able to commit before any endowments are realized, the efficient risk-

sharing arrangement is perfect risk sharing. The commitment requirement is crucial because

after observing current income an agent with a high income may have an incentive to deviate

from the perfect risk-sharing agreement. To capture this rational incentive, we analyze risk-

sharing possibilities with limited contract enforcement or voluntary participation. A risk-sharing

arrangement is consistent with limited commitment if each agent in each possible state, after

observing his first-period endowment and the signal on his future income realization, at least

weakly prefers to follow the arrangement rather than to defect into autarky. For the second

period, we assume that agents respect the commitments made in the first period. Otherwise, if

voluntary participation were allowed in both periods, there would be no room for risk sharing

because agents would always choose to consume their endowments.

Let cji,1 be first-period consumption of agents with signal ki and endowment ej and cjki,2 be

second-period consumption of agents with first-period signal ki and endowment ej in the first

3 As a robustness exercise, we also consider private signals (see Appendix A.3 for the details).

7



period and endowment ek in the second period with i, j, k ∈ {l, h}. The incentives to deviate to

autarky are represented by enforcement constraints that are given by the following expressions

for high-income agents with good and bad signals

u(chh,1) + κu(chhh,2) + (1− κ)u(chlh,2) ≥ u(eh,1) + κu(eh,2) + (1− κ)u(el,2) ≡ V h
h,out (2)

u(chl,1) + (1− κ)u(chhl,2) + κu(chll,2) ≥ u(eh,1) + (1− κ)u(eh,2) + κu(el,2) ≡ V h
l,out (3)

and for low-income agents with good and bad signals

u(clh,1) + κu(clhh,2) + (1− κ)u(cllh,2) ≥ u(el,1) + κu(eh,2) + (1− κ)u(el,2) (4)

u(cll,1) + (1− κ)u(clhl,2) + κu(clll,2) ≥ u(el,1) + (1− κ)u(eh,2) + κu(el,2). (5)

The resource feasibility constraints in the first and second period are the following

1

4

(
chh,1 + clh,1 + chl,1 + cll,1

)
=

1

2

∑
j∈{l,h}

ej,1 (6)

1

4

[
κ
(
chhh,2 + clhh,2 + chll,2 + clll,2

)
+ (1− κ)

(
chlh,2 + cllh,2 + chhl,2 + clhl,2

)]
=

1

2

∑
j∈{l,h}

ej,2 (7)

An efficient allocation is a consumption allocation, {cji,1, c
jk
i,2}, that maximizes ex-ante utility

(1), subject to the enforcement constraints (2)-(5) and the resource constraints (6)-(7).

Efficient allocations may feature either perfect risk sharing (all agents consume ē in all

states), no insurance against income risk (autarky, all agents consume their endowments in all

states) or partial risk sharing. Here we focus on the empirically relevant case of partial risk

sharing. As summarized in the following proposition, better public signals lead to less risk

sharing and higher consumption dispersion.

Proposition 1 (Information and risk sharing) Consider an efficient allocation with par-

tial risk sharing such that the enforcement constraints (2)-(3) are binding. Conditional on the

income-signal pair in the first period, the consumption allocation is characterized by perfect

smoothing across future income states and across periods, i.e.,

cji,1 = cjhi,2 = cjli,2 = cji , ∀i, j.

An increase in information precision has the following effects on the consumption allocation in
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each period:

1. The conditional mean of consumption of high-income agents increases and the conditional

mean of low-income agents decreases.

2. The conditional standard deviations of consumption of high-income and low-income agents

increase.

3. The unconditional standard deviation of consumption increases.

The proof is provided in Appendix A.1.

The main messages from the proposition are first that conditional on an income-signal

pair in the first period efficient allocations feature perfect consumption smoothing across future

income states and time periods. More importantly, more precise signals result in a more unequal

consumption distribution when enforcement constraints matter.

To get intuition why better information on individual future income realizations increase

consumption dispersion, consider an increase in the precision of signals. By (2) and (3), this

results in an increase in the value of the outside option for high-income agents with a good signal

and a decrease for agents with a bad signal. As captured by the changes in the outside option

values, agents with a bad signal are more willing while the agents with a good signal are less

willing to share their current high income. Thus, consumption of high-income agents spreads

out and the conditional standard deviation of consumption of high-income agents increases.

Thereby, the changes in the value of the outside option of high-income agents with a good

signal (V h
h,out) and with a bad signal (V h

l,out) are symmetric:

∂V h
h,out

∂κ
= −

∂V h
l,out

∂κ
.

For informative signals, the high-income agents with a good signal have a lower marginal utility

of consumption and thus require more additional resources than the high-income agents with a

bad signal are willing to give up. In sum, mean consumption of high-income agents increases

which by resource feasibility reduces the risk-sharing possibilities for low-income agents. As a

consequence, the consumption allocation becomes riskier ex ante and the unconditional standard

deviation of consumption increases as well.

In this section, we have shown that more precise signals result in a riskier allocation ex ante

such that the standard deviation of consumption increases. Further, better information results
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in higher consumption of high-income and lower consumption of low-income agents. In the next

section, we present a more general model with an infinite time horizon and endogenous solvency

constraints embedded into a production economy with capital.

3 Environment

Preferences and endowments Consider an economy with a continuum of households in-

dexed by i. Time is discrete and indexed by t from zero onward. Households have preferences

over consumption streams and evaluate them conditional on the information available at t = 0

U
(
{cit}∞t=0

)
= (1− β)E0

∞∑
t=0

βtu(cit), (8)

where the instantaneous utility function u : R+ → R is strictly increasing, strictly concave and

satisfies the Inada conditions.

Household i’s disposable labor income in period t is given by wty
i
t, where wt is the real

wage per unit of effective labor and yit are individual effective labor unit endowments. Effective

labor unit endowments are generated by a stochastic process {yit}∞t=0, where the set of possible

realizations in each period is time-invariant and finite yit ∈ Y ≡ {y1, ..., yN} ⊆ R++, ordered.

The history (y0, ...yt) is denoted by yt. Effective labor units are independent across households

and evolve across time according to a first-order Markov chain with time-invariant transition

matrix πjk > 0 for all j, k whose elements are the conditional probabilities of next period’s

endowment yk given current period endowment yj . There is no aggregate risk, and the Markov

chain induces a unique invariant distribution of income π(y) such that the aggregate labor

endowment is constant and equal to Lt = ȳ =
∑

y yπ(y).

Information Each period t ≥ 0, household i receives a public signal kit ∈ Y that informs about

endowment realizations in the next period. The signal has as many realizations as endowments

states and its precision κ is captured by the probability that signal and future endowment

coincide, κ = π(yt+1 = yj |kt = yj), κ ∈ [1/N, 1]. Uninformative signals are characterized by

precision κ = 1/N , perfectly informative signals by κ = 1. Hence, at each point in time the

agents can find themselves in one of the states st = (yt, kt), st ∈ S, where S is the Cartesian

product Y × Y and st = (yt, kt) = (s0, ...st) is the history of the state.

The realizations of the signal follow an exogenous Markov process with transition probabili-
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ties π(kt+1 = yi|kt = yj) that are chosen such that the resulting joint distribution of endowments

and signals satisfies the following two consistency requirements.

Consistency Requirement I: The marginal distribution of the joint invariant distribution

π(s) = π(y, k) with respect to income equals the invariant distribution of endowments π(y), i.e.,

π̂(y) =
∑
k∈Y

π(y, k)
.
= π(y).

Consistency Requirement II: The conditional distribution of endowments π(y′|y) follows

from integrating π(y′|y, k) with respect to signals, i.e.,

π̂(y′|y) =
∑
k∈Y

π(y′|y, k)π(k|y)
.
= π(y′|y),

where y′ denotes a future realization and y a current realization of the variable y. In Appendix

A.2, we show that consistency with these requirements yields signal transition probabilities that

depend in general on the properties of the Markov process for endowments and on the precision of

signals. In case of a symmetric transition matrix for endowments, signal transition probabilities

are independent of κ and consistency requires the signals to follow the same stochastic process

as endowments. Otherwise, the joint distribution of endowments and signals does violate at

least one of the consistency requirements. If signal were for example i.i.d. but endowments are

persistent, we show that at least one of the two consistency requirements is violated. Thus,

when income is persistent, signals are persistent as well. This implies that the effect of a signal

realization today does not only affect expectations for income in the next period but can have

long-lasting effects for future expectations.

Using the assumptions on endowments and signals, the probabilities for the distribution of

future endowments conditional on today’s state s is given by4

π(y′|s) = π
(
y′ = yj |k = ym, y = yi

)
=

πijκ
1m=j

(
1−κ
N−1

)1−1m=j

∑N
z=1 πizκ

1m=z

(
1−κ
N−1

)1−1m=z
, (9)

where 1m=j is an indicator function and equals one if the signal and the actual realization of the

endowment coincide. The formula follows from Bayes law and its logic is a signal extraction with

4 Appendix A.4 provides details on the derivation of the formulas for the joint distribution of endowments and
signals.
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two independent signals on future endowment realizations, current endowments and the public

signal. Both “signals” enter the signal extraction weighted with their precision, endowments

with transition probability πij and signals with precision κ.5

For example, with uninformative signals (κ = 1/N) the conditional probability of endowment

yj tomorrow given today’s signal kj and endowment yi can be computed as

π
(
y′ = yj |k = yj , y = yi

)
=

πij
1
N

1
N

∑N
z=1 πiz

= πij .

With signals following an exogenous process, the conditional distribution of signals and en-

dowments can be combined to a time-invariant Markov transition matrix Ps with conditional

probabilities π(s′|s) as elements

π(s′|s) = π
(
y′ = yj , k

′ = yl|k = ym, y = yi
)

= π(k′ = yl|k = ym)π
(
y′ = yj |k = ym, y = yi

)
. (10)

Production A representative firm hires labor Lt and capital Kt at rental rates wt and rt to

maximize profits. Capital depreciates at rate δ and the production of consumption goods Yt

takes place via a linear homogenous production function

Yt = AF (Lt,Kt),

with A as a productivity parameter that is constant in the stationary equilibria that we focus

on in the following. Aggregate labor endowments Lt are normalized to unity.

Endogenous solvency constraints Following Alvarez and Jermann (2000), there is no re-

striction on the type of insurance contracts that can be traded but the contracts suffer from

limited commitment because every period agents have the option to default to autarky. House-

holds can buy or sell state-contingent assets a(st, st+1) priced at q(st, st+1). The state-contingent

asset a(st, st+1) prescribes one unit of the consumption good in state st+1 to or from an agent

that experiences the history st. Households trade the asset with financial intermediaries that

live for one period and can also invest into capital. Households face state-contingent endoge-

nous credit limits A(st, st+1) that are not “too tight”, i.e., credit limits that only ensure that

5 At the end of this section, we elaborate on our modelling choices regarding the specification of signals.
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households have no incentive to default to autarky but do not constrain insurance contracts

otherwise

a(st, st+1) ≥ A(st+1) = min
{
a(st+1) : V [a(st+1), st+1] ≥ UAut(st+1)

}
, ∀st+1, (11)

with UAut as the value of the outside option and V (a, s) as the continuation value of a household

with asset holdings a and state s (see the recursive problem (12)-(14) below). In case of

defaulting to the outside option and consistent with US bankruptcy law, households lose all

their assets. Further, access to financial markets is restricted. While agents can save unlimited

amounts in a non-state contingent bond with gross return R, they cannot borrow. Thus, the

value of the outside option is a solution to an optimal savings problem that can be written in

recursive form as follows

v(a, s) = max
0≤a′≤y+aR

[
(1− β)u(aR+ y − a′) + β

∑
s′

π(s′|s)v(s′, a′)

]
,

such that the value of the outside option is given by

UAut(s) = v(0, s).

Given asset holdings a, state s = (y, k), and prices w, {q(s, s′)}, households’ problem can be

written recursively as

V (a, s) = max
c,{a′(s′)}

{
(1− β)u(c) + β

∑
s′

π(s′|s)V
[
a′(s′), s′

]}
(12)

subject to a budget constraint and solvency constraints

c+
∑
s′

q(s, s′)a′(s′) ≤ wy + a (13)

a′(s′) ≥ A(s′), ∀s′. (14)

The result of the utility maximization problem are policy functions c(a, s), {a′(a, s; s′)}. In

period zero, households differ with respect to initial asset asset holdings and initial shocks where

the heterogeneity is captured by the invariant probability measure Φa,s. In an economy with

one non-state contingent asset, Ábrahám and Cárceles-Poveda (2010) show that the endogenous
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credit limits derived according to (11) share some realistic features with credit limits observed

in the Survey of Consumer Finances (SCF). As in the data, credit limits in the model become

looser as labor income increases. While agents with a higher income have more incentives to

default because higher income shocks lead to a higher autarky value, this does not necessarily

lead to tighter credit limits. In our quantitative results, we confirm the results of Ábrahám and

Cárceles-Poveda (2010) for a complete set of state contingent assets.

Equilibrium The stationary recursive competitive equilibrium with solvency constraints is

summarized in the following definition.

Definition 1 A stationary recursive competitive equilibrium with solvency constraints com-

prises a value function V (a, s), a price system R,w, q(s, s′), an allocation K, c(a, s), {a′(a, s; s′)},

a joint probability measure of assets and exogenous state Φa,s, and endogenous credit limits A(s′)

such that

(i) V (a, s) is attained by the decision rules c(a, s), {a′(a, s; s′)} given R,w, q(s, s′)

(ii) Endogenous credit limits are determined according to (11)

(iii) The joint distribution of assets and state Φa,s induced by {a′(a, s; s)} and Ps is stationary

(iv) No arbitrage applies

q(s, s′) =
π(s′|s)
R

(v) Factor prices satisfy

R− 1 = AFK(1,K)− δ

w = AFL(1,K)

(vi) The asset market clears

R′K ′ =

∫ ∑
s′

a′(a, s; s′)π(s′|s) d Φa,s.

We conclude this section with a discussion of some features of the information environment

outlined at the beginning of this section. With the signals, we collect a wide spectrum of
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information such as foreknowledge of future performance bonuses, promotions, demotions wage

cuts or wage rises. In formula (9), we model signals with a “hit or miss specification” in the

following sense. The probability that the signal indicates the correct endowment realization

is κ, and 1 − κ is the probability that signal and future endowment realization differ. This

probability is then allocated equally to the endowment states not indicated by the signal. Thus,

conditional on the signal being wrong, the transition probability is exclusively driven by the

endowment transition probabilities π(y′|y). For the type of information we seek to model this is

a reasonable specification, in particular when endowment shocks are persistent as in reality. To

see this, suppose that an agent receives a signal that he will likely get a bonus in the next period

and according to the formula his probability to receive an endowment rise increases compared

to the case without the signal. With some probability, however, he might not get the bonus. In

this case, the probability to transit to a particular endowment state should not be affected by

the signal anymore but solely be conditional on his current endowment state. This is exactly

what is captured in the formula by allocating 1− κ equally over the states without a bonus.

The examples in the introduction include both private and public information. We opted

for public signals for the following reasons. First, with the signals, we seek to model the pre-

dictive power of publicly available subjective income expectations as estimated in the empirical

literature and public signals serve exactly this purpose. The subjective expectations elicited in

studies such as Dominitz (1998) are probably the result of both, private and public information

on future earnings. To the best of our knowledge, there is no paper yet that disentangles the

public and private sources underlying the subjective expectations. Second, an advantage of

public signals compared to private signals is that we can specify a fully decentralized version

in which households engage in unmonitored trade of ordinary securities. Atkeson and Lucas

(1992) show that such a decentralization is not feasible with private information. Thus, with

private signals we have to consider a social planner problem which is less realistic. Third, we

also don’t want to be silent about the fact that public signals are more tractable than private

signals which allows us to employ realistic income processes with both transitory and persistent

shocks. In our quantitative exercise, we employ a signal-income distribution with 36 states.

With public signals alone, that means that at each node (a, y, k) we have to check 36 occa-

sionally binding constraints resulting from the option to default to autarky which is already

more than the 14 states typically considered in related studies. With private information, we

would have to additionally consider 5 constraints that capture households’ incentives to reveal
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the true realization of the private signal. More than the sheer increase in occasionally binding

constraints at each node, the interaction of enforcement and truth-telling constraints results in

additional challenges in the computation of allocations. For this reason, existing studies such

as Broer, Kapička, and Klein (2017) focus on the theoretical implications of private information

and consider stylized endowment processes with only two states. Finally, we find that increases

in signal precision with private signals have qualitatively similar effects on risk sharing in a

two-period model (see Appendix A.3).

In the following, we study the quantitative implications of advance information in this model

for consumption risk sharing.

4 Quantitative exercise

In this section, we describe the data employed in the quantitative exercise and the calibration of

parameters. Further, we explain how we measure consumption risk sharing and how we assess

the difference in income uncertainty measured by econometricians and households.

4.1 Data and calibration

Data To quantitatively evaluate the model, one would like to employ a household panel data

set with a large number of observations that contains detailed information on households’ in-

come, their consumption expenditures and their subjective expectations of future income. To

the best of our knowledge such a data set does not exist for the US. For this reason, we opt for

the following strategy. To facilitate comparison with related studies in particular to Krueger

and Perri (2006) and Broer (2013), we also use as a first step the Consumer Expenditure In-

terview Survey (CEX) for information on households’ income and consumption expenditures.

Starting from the calibration used in these papers, we investigate how informative signals af-

fect consumption inequality and insurance in the model by varying signal precision to find our

preferred value for the parameter κ. Afterwards, we relate the value of the parameter to infor-

mation on the predictive power of subjective expectations elicited in the special edition of the

Survey of Economic Expectations from 1993–1994 that contains information on US households’

income realizations and their corresponding income expectations.

For the CEX, we exactly follow Krueger and Perri (2006) and Broer (2013) in their method-

ology. In particular, we decompose consumption and income inequality in between and within
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group inequality. Between-group inequality are differences in household income and consump-

tion attributable to observable characteristics for example education, region of residence, etc.,

and assume that households cannot insure against these observable characteristics. Income in-

equality devoid of between group inequality component is called within group inequality. This

residual measure of inequality is the focus of this paper as it is caused by the idiosyncratic in-

come shocks and hence, depending on the insurance available against these shocks, consumption

inequality will not exactly mirror income inequality.

As measure of household consumption, we employ non-durable consumption (ND+) which

also includes an estimate for service flows from housing and cars. For households’ disposable

income, we use after-tax labor earnings plus transfers (LEA+). Consistent with voluntary par-

ticipation, we thus take the mandatory public insurance as given and focus on private insurance.

LEA+ comprises the sum of wages and salaries of all household members, plus a fixed fraction

of self-employment farm and non-farm income, minus reported federal, state, and local taxes

(net of refunds) and social security contributions plus government transfers.

We drop the households who report zero or only food consumption, whose head is older

than 64 years or younger than 21 years, with negative or zero labour income or have negative

working hours, which have positive labour income but no working hours, that live in the rural

area or their weekly wage is below half the minimum wage and which are not present in all

interviews. To facilitate a comparison between households of different size, the consumption

and income measures are divided by adult equivalence scales as in Dalaker and Naifeh (1997).

To compute within group inequality, we follow Krueger and Perri (2006) and Blundell et al.

(2008), and regress the logs of household consumption and income on a cubic function of age and

a set of dummies that include region, marital status, race, education, experience, occupation

and sex. The residuals of the regression are treated as consumption and income shock.

Model parameters Our annual calibration is designed to highlight the differences between a

standard limited commitment model without information as entertained in Broer (2013) and a

model with information. Therefore, we set a number of corresponding parameters to the same

values. In particular, we consider a period utility function that exhibits constant relative risk

aversion with parameter σ = 1. The discount factor β is chosen to yield an annual gross interest

rate of R = 1.025 in general equilibrium. We employ a Cobb-Douglas production function

AF (K,L) with a capital-production elasticity of 0.30. Given R, we choose the depreciation of
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the capital stock δ and the technology parameter A to yield a real wage rate of unity and an

aggregate wealth-to-income ratio of 2.5 as for example estimated by Kaplan and Violante (2010)

based on the Survey of Consumer Finances (SCF). With a wage rate of unity, labor income is

wy = y and we use the terms individual endowment and individual income interchangeably.

Following the practice in the literature, the income specification comprises persistent and

transitory income components. Log income of household i is modelled as

ln(yit) = zit + εit, zit = ρzit−1 + ηit,

where εit and ηit are independent, serially uncorrelated and normally distributed with variances

σ2
ε and σ2

η, respectively.6 The persistence parameter ρ is set to 0.9989 which is the value

originally found by Storesletten, Telmer, and Yaron (2004). Given the persistence parameter,

we identify the variances σ2
ε , σ

2
η from the cross-sectional within-group income variance and auto-

covariance in the CEX data as the averages of the years 1999–2003. The method proposed by

Tauchen and Hussey (1991) is used to approximate the persistent part of income by a Markov

process with three states and time-invariant transition probabilities, and the transitory part is

captured with two exogenous states of equal probability. We normalize the value of all income

states such that mean income (or aggregate labor endowment) is equal to unity. For each of

the six income states, there are therefore six public signals such that the joint income-signals

state S is approximated by 36 states which is higher than the 14 states typically considered in

related studies (Broer, 2013, Krueger and Perri, 2006). The increase in the number of states

leads to a numerical challenge for computing consumption allocations in general equilibrium.7

4.2 Insurance and risk-sharing measures and uncertainty gap

Insurance and risk-sharing measures To measure the extent of consumption smoothing

and inequality from the data, we focus on two measures: (1) the covariance of consumption

and income growth as an insurance measure, and (2) the relative variance of log-consumption

with respect to log-income to capture consumption inequality. The first measure captures the

6 We consider a signal that informs about total future disposable income, i.e., about the combination of tran-
sitory and persistent shocks. An alternative is to specify two signals, one that informs about future realizations
of transitory and one that informs about future realizations of persistent shocks.

7 In Appendix A.5, we describe our algorithm for computing allocations in the endogenous-solvency constraints
model in more detail. With 500 points on the asset grid, we solve in each iteration step for 666,000 variables.
In a standard model without information and 14 income states as in Broer (2013), the corresponding number of
variables is 105,000.
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Table 1: Baseline parameters and CEX moments

Parameter Value

σ Risk aversion 1
α Elasticity of capital in production function 0.3000
R Gross interest rate 1.0250
ρ Auto-correlation 0.9989
ση Standard deviation innovation persistent shocks 0.0245
σε Standard deviation innovation transitory shocks 0.3390
S Income-signal states 36

vary Variance log income 0.3654
varc Variance log consumption 0.1462
β∆y Regression coefficient 0.1078
RS Risk-sharing ratio 0.5999

sensitivity of consumption growth to income growth. Following Mace (1991), the sensitivity is

captured by the coefficient β∆y in the following regression equation

∆cit = ψ + β∆y∆yit + vt + νit (15)

where ψ is a constant, vt a vector of time dummies and νit a residual; ∆cit and ∆yit are the

growth rates of consumption and income of individual i in period t. When the coefficient β∆y

is zero, then consumption growth is perfectly insured against changes in income growth. The

higher is the coefficient, the less insurance is achieved.

The second measure is defined as one minus the ratio of the cross-sectional unconditional

variance of logged consumption over logged income:

RS = 1− varc
vary

(16)

On one extreme, if varc = vary, then RS = 0, and there is no private risk sharing of fluctuations

in disposable income. On the other hand, if varc = 0 then RS = 1 implying full risk sharing with

respect to income shocks and the absence of consumption inequality. In Table 1, we summarize

the calibrated parameters in the upper part and unconditional moments of consumption and

income from the CEX data in the lower part. The value of β∆y is equal to 0.11 with a standard

error of 0.0035; the ratio RS is 1− varc
vary

= 0.60 which implies 40% of income shocks transfer to

consumption.
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Measuring the uncertainty gap To interpret the effects of an increase in information

precision κ, we compute the percentage reduction of households’ perceived income uncertainty

κ̃ as measured by the reduction in the mean-squared forecast error resulting from conditioning

expectations on signals

κ̃(κ) =
MSFEy −MSFEs

MSFEy
, (17)

with

MSFEy =
∑
y

π(y)
∑
y′

π(y′|y)
[
y′ − E(y′|y)

]2

MSFEs =
∑
s

π(s)
∑
y′

π(y′|s)
[
y′ − E(y′|s)

]2
,

and π(s) as the joint invariant distribution of endowments and signals. Thus, κ̃ captures the

difference in income uncertainty as measured by an econometrician in the aggregate and the

uncertainty as perceived by households stemming from subjective expectations. For this reason,

we refer to κ̃ as the uncertainty gap.

5 Quantitative results

In this section, we provide quantitative results on the effect of advance information on con-

sumption insurance and inequality of households in the United States. First, we employ the

model with endogenous solvency constraints (ESC model) presented in Section 3 to quantify

advance information through the lens of this model. We further discuss how the quantified

value for advance information relates to direct estimates of the predictive power of subjective

expectations and what this values implies for various “over-identifying restrictions”. We also

study the quantitative effects of advance information on consumption insurance and inequality

in a standard incomplete markets model (SIM).

5.1 Endogenous solvency constraints model

Quantifying advance information To discipline the only free parameter κ̃, we choose the

parameter such that the consumption inequality and insurance predicted by the model matches

two distinct measures observed in the data. The risk-sharing ratio as the first measure char-

acterizes the cross-sectional dispersion of consumption. As the second measure, we employ the

regression coefficient of current consumption growth with respect to income growth as a measure
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to determine the sensitivity of consumption with respect to changes in income (insurance). In

general, we therefore expect to pin down two values for the reduction in households’ perceived

income uncertainty κ̃1, κ̃2 that yield insurance measures in the model that are consistent with

the value of the measures observed in the CEX.

For the first measure, we use the cross-sectional variance of consumption in the invariant

distribution. For the second insurance measure, we employ stationarity and simulate the model

for 300,000 time periods and discard the first 100,000 periods to ensure convergence. Then we

estimate covariances of consumption and income growth using the simulated data.

Our main quantitative findings are summarized in Table 2 that displays the two measures

in the data and for various values of κ̃. As can be seen in the first row, without signals, κ̃ = 0,

consumption is almost perfectly smooth such that the risk-sharing ratio equals 0.99.8 Consistent

with the third part of Proposition 1, the risk-sharing ratio decreases in the precision of signals

or equivalently in κ̃. For κ̃1 = 0.124, the insurance ratio of 0.60 in the data is also explained in

the model.

The third row shows how the uncertainty gap affects the regression coefficient β∆y. While

in the absence of information consumption growth is nearly perfectly guarded against changes

in income growth, the sensitivity of consumption increases with the size of the uncertainty gap.

For κ̃2 = 0.116, the model matches the regression coefficient observed in the data. In that sense,

both measures are jointly explained by the model for an uncertainty gap of 12% (rounded). This

result is remarkable because in general the two measures have to coincide only in the extreme

cases when risk sharing (and insurance) is either perfect or absent.

Discussion and robustness How can we interpret a reduction of perceived income risk of

12%? If income was i.i.d., the mean-squared forecast error for a variance of logged income of

0.37 is 0.42. With persistent income alone, the mean-square forecast error is reduced to 0.21;

with signals alone the mean-squared forecast error amounts to 0.30. Thus, current income is a

more important predictor for future income than signals. Considering both predictors of future

income jointly, the signals reduce the mean-squared forecast error of conditioning on income

8 The result of the (almost) absence of consumption inequality in the standard model without signals seems
to be surprising but it corresponds to the consumption inequality that would prevail in the invariant distribution
in Krueger and Perri (2006) with the income inequality equal to the value at the end of their sample in the
year 2003. Krueger and Perri (2006) do not report the stationary level of consumption inequality in the paper
because their focus is on understanding the relationship between changes in income and consumption inequality
(see Figure 5 in their paper). Further, in the year 2003 the model economy they consider is not in the stationary
equilibrium associated with the income inequality of 2003 but converges to this equilibrium.
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Table 2: Insurance measures and advance information ESC model

Risk-sharing ratio, RS

κ̃ = 0.00 κ̃1 = 0.124 κ̃ = 0.138 κ̃14 = 0 Data

Baseline 0.99 0.60 0.47 0.94 0.60
Aguiar and Bils (2015) 0.99 0.60 0.47 0.94 0.47

Regression coefficient, β∆y

κ̃ = 0 κ̃2 = 0.116 κ̃ = 0.123 κ̃14 = 0 Data

Baseline 0.00 0.11 0.16 0.01 0.11
Gervais and Klein (2010) 0.00 0.11 0.16 0.01 0.16

Notes: ESC model. Insurance ratio and regression coefficient in the data and in the model for different
values of κ̃. No signals is κ̃ = 0.00.

only by 12%.

A natural question is how the value of κ̃ that we indirectly quantify using the model with

endogenous solvency constraints compares with direct estimations of the predictive value of

subjective expectations. In the Spring and Fall of 1993, households in the Survey of Economic

Expectations (SEE) were asked in to report their weekly earnings expectations for 1994. To

elicit households’ income expectations, Dominitz (1998) analyzes the relationship between the

expectations reported in 1993 and the actual realizations of earnings in 1994. In particular,

he estimates best linear predictors for 1994 earnings. He finds that even after controlling for

earnings realizations in 1993, the reported subjective expectations have predictive value. Con-

ditioning not only on the earnings realizations in 1993 but additionally on reported subjective

earnings expectations from Spring 1993 decreases the mean-squared forecast error by 0.118,

conditioning on the Fall expectations reduces the error by 0.214. Given that we employ one-

year ahead earnings forecasts in the model, the values of κ̃1 = 0.124 and κ̃2 = 0.116 we find

in the model are consistent with the direct evidence of 0.118 stemming from the Spring 1993

forecast.

Aguiar and Bils (2015) and Attanasio, Hurst, and Pistaferri (2012) argue that the con-

sumption expenditures reported in the CEX Interview Survey may suffer from non-classical

measurement error, resulting in biased estimates of cross-sectional consumption inequality mea-

sures. In particular, Aguiar and Bils (2015) find that consumption inequality (measured as the

cross-sectional variance of logged consumption) has not increased by less than income inequal-

ity (measured as the cross-sectional variance of logged income) but moved hand-in-hand with
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income inequality from 1980-2003. The uncertainty gap we identify is not very sensitive with

respect to a potentially noisy estimate for consumption inequality for two reasons. First, even

if the correct insurance ratio is different than the number computed directly from the CEX, the

identified uncertainty gap would only be mildly affected. Suppose that consumption inequality

has mirrored income inequality between 1980 and 2003 which results in an risk-sharing ratio

of 0.47 instead of the 0.60 we report in Table 19. As can be seen in the second row of Table

2, the model can capture the modified risk-sharing ratio with a slightly higher value for the

size of the uncertainty gap, κ̃ = 0.138 instead of 0.124 as in the baseline calibration exercise.

Second, using the regression coefficient as an alternative insurance measure yields very similar

numbers for advanced information. This measure is less prone to measurement error because the

regression coefficient employs growth rates as a ratio and therefore corrects for time-invariant

multiplicative measurement error. Additionally, we find that the regression coefficient in the

CEX of 0.11 is very close to the corresponding coefficient that we estimate using PSID data,

0.12, as an alternative data source.

Gervais and Klein (2010) argue that the standard estimator β∆y = 0.11 tends to overstate

the degree of insurance in CEX data, and propose an alternative estimator. Using the same

data as we do but employing the procedure proposed by Gervais and Klein (2010), Broer (2013)

estimates a value of β̂∆y = 0.16 (see Row 7, Column 6 of Table 3 on page 132), implying that

consumption growth reacts more sensitively to income changes than in our baseline estimation.

As displayed in the fourth row of Table 2, alternatively matching this value of the regression

coefficient, we need more precise signals: κ̃ = 0.123 instead of κ̃ = 0.116, a value that is very

close to κ̃ = 0.124 which yields an insurance ratio of 0.60 in the model.

The high degree of insurance in the standard model without signals could be an artefact

of employing an income grid with 6 states. Applying alternatively a finer income grid with 14

states – 7 states for the persistent shocks and 2 states for the transitory shocks – only mildly

reduces consumption smoothing (see the forth column of Table 2, κ̃14 = 0); the risk-sharing

ratio decreases from 0.99 to 0.94 and the regression coefficients increases from 0.00 to 0.01.

In Figure 3 in Appendix A.3, we compare the effects of increases in signal precision of

public and private signals on consumption insurance. While increases in precision in both cases

increase consumption dispersion, consumption risk sharing and insurance react more sensitively

9 Assume that consumption inequality increases with the same rate as income inequality (0.5012) such that
consumption inequality is 0.1938 instead of 0.1462. Thus, the insurance ratio is 0.47 which requires κ̃ = 0.1376
to capture the modified risk-sharing ratio.
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to private information. If subjective expectations were exclusively based on private information,

matching the insurance measures from the data in the model would thus require lower values of

κ̃ than the 12% found for public signals, resulting also in a lower predictive power of subjective

expectations than the 12-21% estimated in Dominitz (1998).

Similar to Ábrahám and Cárceles-Poveda (2010) for a non-state contingent asset, we also

find that credit limits become looser as labor income increases with a full set of state-contingent

assets. Further, we find that the difference in credit limits between low-income and high-income

earners increases in κ̃. In the absence of signals, low-income households face credit limits that

are 14% stricter than for high-income households. For κ̃2 = 0.116 and averaging across signals,

the credit limits for low-income agents are 30% stricter than for high-income agents.

Kaplan and Violante (2010) conclude that advance information cannot reconcile insurance

ratios or regression coefficients in a life-cycle standard incomplete markets model with the mea-

sures observed in the data. We find that the picture changes when we alternatively employ

a model with endogenous solvency constraints. Here, advance information on future income

shocks can bridge the gap to the data. Correspondingly, we can quantify households’ advance

information by matching the insurance ratio or, alternatively, by capturing the regression coeffi-

cient of current consumption growth on current income growth. Our main quantitative finding

is that both insurance measure can be jointly explained when households’ perceived income

uncertainty is reduced by 12%. In the following, we fix information precision at this value, and

analyze the model’s performance for various “over-identifying restrictions”.

5.2 Over-identifying restrictions

The goal of this section is to further test the model with the amount of advance information

as quantified in the previous section. Throughout this section, we compare the standard model

without signals to the case of informative signals.

Consumption-income growth correlations with advance information Blundell, Pista-

ferri, and Preston (2008) argue that including advance information in standard incomplete

markets model (SIM) may lead to correlations of current consumption with future income

growth that are not consistent with the data.10 To test for a potential role of advance

10 Guvenen and Smith (2014) consider households with initial knowledge about their individual deterministic
part of income growth. This type of advance information does not result in the counterfactual consumption-
income growth correlations in a SIM -model.
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Table 3: Income and consumption growth regression: ESC model

κ̃ = 0.00 κ̃2 = 0.116 κ̃1 = 0.124 Data

β∆yt 0.00 0.11 0.16 0.11
β2 −0.00 0.01 0.01 –

T-cov(∆ct,∆yt) 0.00 0.05 0.05 0.00
T-cov(∆ct,∆yt+1) 0.00 0.89 0.92 –

Notes: In the table, we provide regression coefficients and their p values for the regression ∆cit =
β0 + β′∆yi + εit, with β = [β∆yt , β2]′ and ∆yi = [∆yit,∆y

i
t+1]′ for different precisions of signals. No

signals is κ̃ = 0.00. T-cov(∆ct, ·) reports p-values for the covariances to be significantly different from
zero.11

knowledge of future income shocks, the authors employ household panel data from the Panel

Study of Income Dynamics (PSID) to estimate correlations of current consumption growth

∆ci,t = log(cit) − log(cit−1) with future income growth ∆yi,t+j = log(yit+j) − log(yit+j−1) for

j ≥ 1. Through the lens of a SIM -model, if there was advance knowledge of income shocks, the

correlation in the data should be significantly different from zero because consumption should

adjust before the shock has occurred. However, Blundell, Pistaferri, and Preston (2008) estimate

correlations that are not significantly different from zero with p-values larger than 25%.

The endogenous-solvency constraints model with information is consistent with that evi-

dence. As reported in the first column of Table 3, the correlation of current consumption growth

with future income growth is not significantly different from zero for the standard model with

κ̃ = 0. This pattern does not change for informative signals. As displayed in the second and

third column, for κ̃1 = 0.124 (yields the insurance ratio from the data) and for κ̃2 = 0.116

(yields the regression coefficient from the data), only the correlation of current income growth

and current consumption growth is significantly different from zero. Consistent with Blundell,

Pistaferri, and Preston (2008), the correlations of current consumption growth with future in-

come growth are not significantly different from zero with p-values larger than 89%. For the

precision of information necessary to capture consumption insurance in the data, advance infor-

mation in the ESC model does not induce counterfactual correlations of current consumption

growth with future income growth.12

The logic for this result can be rationalized within the limited commitment endowment

economy presented in Section 2. As summarized in Proposition 1, one key feature of the

(constrained) efficient allocation is that conditional on a particular income-signal pair in the

12 This result also applies for more precise signals. In an endowment economy, we compute p-values larger than
60% even when information precision is as high as κ = 0.90.
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first period consumption is perfectly smoothed across both income states in the second period

but also across time, decoupling consumption from future income realizations. Thus, the planner

encourages high-income agents with binding enforcement constraints to transfer resources today

in exchange for insurance of income shocks in the future. When signals become more precise,

the outside option becomes more attractive for agents with a high income and it becomes

more difficult for the planner to generate transfer to less fortunate agents. The efficient way

to facilitate these transfers is to continue to promise consumption smoothing across time and

states and to increase the level of consumption for high-income agents but not to break up the

decoupling of consumption from future income realizations. Consequently, current consumption

remains decoupled from future income realizations, and current consumption growth is not

correlated with future income growth even when signals become more precise.

Income-conditional distribution of consumption To compare conditional moments from

the data and models, our procedure is the following. We start with the stationary distribution

of income implied by the Tauchen and Hussey (1991)’s procedure and compute the conditional

mean and variance corresponding to this stationary distribution in each model. For the data, we

employ the percentiles from the stationary income distribution and compute the moments for

the percentiles, accordingly. For our calibration, this corresponds to the following percentiles:

[17th, 33th, 50th, 67th, 83th]. For example, households with a high income represent the top

17% of income earners.

Insurance is close to perfect in the endogenous-solvency constraints model without signals.

To facilitate a fair comparison, we employ the results derived in the endowment economy for

the standard model.13

In Figure 1, we plot the conditional mean of log consumption in the data, in the standard

model without signals and for informative signals of precision κ̃2 = 0.116. In the absence

of signals, the average consumption of low-income households is too high compared to the

data while the consumption of high-income agents is too low. Further, indicating also too

much insurance for low-income states, average consumption is constant for the two low-income

groups in the absence of information; in the CEX data, average consumption is increasing for

all income states. With informative signals, household consumption becomes more dispersed.

Consistent with the first part of Proposition 1, we find that average consumption of low-income

13 Alternatively employing the standard model with the possibility to return from autarky to insurance as in
Broer (2013) yields similar conditional consumption moments and are available on request.
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Figure 1: ESC model. Conditional mean of logged consumption with respect to logged in-
come for different precisions of signals. The x−axis captures the log income and y−axis
represents the conditional mean of log consumption. Income steps represent percentiles:
[17th, 33th, 50th, 67th, 83th]. Solid line captures the conditional means for the years 1999–2003
in the CEX.

Table 4: Conditional moments of consumption: ESC model

κ̃ = 0 κ̃2 = 0.116 κ̃1 = 0.124 Data

MSE, E [log(c)|y] , no 34.15 1 4.67 –
E [log(c)|yh]− E [log(c)|yl] 0.30 0.68 0.80 0.68
MSE, STD [log(c)|y] , no 3.48 1 0.91 –
STD[log(c)|yh]
STD[log(c)|yl] 0 0.38 0.36 0.95

Notes: The table provides the mean squared deviations of model and data for the conditional means and
standard deviations of consumption expressed relative to signals with κ̃2 = 0.116, normalized no; the
table also provides spreads between average consumption and the standard deviation of low-and high
income households. No signals is κ̃ = 0.

households decreases while consumption of high-income households increases, leading to a more

dispersed consumption distribution and a better fit to the data. Further and as in the data,

the conditional mean of consumption is increasing in income over all incomes states. Overall,

the conditional mean of consumption is tracked in an almost perfect way for informative signals

over all six income groups.

The second part of Proposition 1 suggests that more precise signals increase the income-

conditional standard deviations of consumption. As displayed in Figure 2, advance information

indeed results in a higher conditional standard deviation for all income groups. In particular,

27



Log income
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6

C
o
n
d
it
io
n
a
l
st
d
.
d
ev
.
lo
g
co
n
su
m
p
ti
o
n

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Data

No Signals, κ̃ = 0

Signals, κ̃2 = 0.1158

Figure 2: ESC model. Conditional standard deviation of logged consumption with respect to
logged income for different precisions of the signals. The x−axis captures the log income and
the y−axis the conditional standard deviation of logged consumption. Income steps represent
percentiles: [17th, 33th, 50th, 67th, 83th]. Solid line captures the conditional standard deviations
for the years 1999–2003 in the CEX.

information leads to an increase in consumption dispersion conditional on a high income; in

the absence of information, the standard deviation is zero while with informative signals it

is positive and increasing in precision. With informative signals, the conditional standard

deviation is tracked reasonably well for low-and middle-income earners but the distance to the

data increases for the high-income groups.

Quantitatively, the fit of the conditional consumption distribution to the data is substantially

improved by advance information. As displayed in Table 4, the mean-squared deviations of the

conditional mean of consumption between model and data are approximately 34 times as large

in the standard model than for κ̃2 = 0.116; for κ̃1 = 0.124, the mean deviations are 4.5 times

higher than for κ̃2 = 0.116 but still over 7 times lower than in the standard model. Further,

the spread between average consumption of high-and low income households in the CEX data

of 0.68 is perfectly captured by signals with κ̃2 = 0.116.

There is also some improvement in fit for the conditional standard deviation of consumption

but the improvement is not as striking as for the conditional mean. Relative to the standard

model, the mean-square error is 3.5 times smaller for κ̃2 = 0.116, and approximately 4 times

smaller for κ̃1 = 0.124. Further, the ratio of the conditional standard deviations for high-and
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low-income households increases from 0 in the standard model to 0.4 with advance information.

This increase is however too small to capture the ratio of almost 1 observed in the CEX.

5.3 Standard incomplete markets model

In the following, we consider advance information in a standard incomplete markets (SIM)

model.

Environment While preferences and endowments are as described in Section 3, households

in the standard incomplete markets economy can only trade in a single non-state contingent

bond with gross return R and face an exogenous borrowing limit ā. There are no enforcement

frictions and we directly focus on stationary allocations. The model we consider is similar to

Huggett (1993) and relies on a market structure with a continuum of households as in Aiyagari

(1994). Given asset holdings a, state s = (y, k), and an interest rate R, households’ problem

can be written recursively as

V (a, s) = max
c,a′

[
(1− β)u(c) + β

∑
s′

π(s′|s)V (a′, s′)

]

subject to a budget and a borrowing constraint

c+ a′ ≤ wy +Ra

a′ ≥ − ā.

Here, households differ with respect to initial asset asset holdings and initial shocks where

the heterogeneity is captured by the probability measure Ψa,s. The state space is given by

M = A× S, where A = [−ā,∞).

The stationary recursive competitive equilibrium is summarized in the following definition.

Definition 2 A stationary recursive competitive equilibrium in the standard incomplete markets

economy comprises a value function V (a, s), prices R,w, an allocation c(a, s), a′(a, s),K a joint

probability measure of assets and the state Ψa,s, and an exogenous borrowing limit ā such that

(i) V (a, s) is attained by the decision rules c(a, s), a′(a, s) given R

(ii) The joint distribution of assets and state Ψa,s induced by a′(a, s) and Ps is stationary.
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(iii) Factor prices satisfy

R− 1 = AFK(1,K)− δ

w = AFL(1,K)

(iv) The bond market clears ∫
a′(a, s) d Ψa,s = K ′.

Households are restricted to trading a single non-state contingent asset. For this reason, one

convenient feature of the (SIM) model is that the distinction between public or private infor-

mation is irrelevant.

Quantitative results As emphasized by Blundell, Pistaferri, and Preston (2008) and Kaplan

and Violante (2010), in a SIM model better information on future income realizations allows

households to improve on their consumption-savings decisions, and risk sharing improves. Thus,

better information has a positive effect by improving individual decision which is referred to as a

Blackwell (1953) effect of information. For generating the quantitative results, we employ for the

common parameters the same parameter values as in the corresponding limited commitment

economy. Wolff (2011) finds that 19% of all US households are borrowing constrained. For

this reason, we choose an exogenous borrowing limit ā to yield in equilibrium 19% borrowing-

constrained households in the standard model without information.

In line with earlier findings by Kaplan and Violante (2010), we find that insurance ratios

improve monotonically in information precision but the improvement is too small to capture

the risk-sharing ratio of 0.60 observed in the data even for very informative signals. In the

absence of signals, the model implies that households share about 40% of all fluctuations in

their after-tax income. As an extreme case, if information precision amounts to κ = 0.99 –

corresponding to a reduction of income uncertainty κ̃ of 97% – the risk-sharing ratio reaches

0.51. Thus, the increase in risk sharing by better information is quantitatively too small to

capture the insurance observed in CEX data.

The simulation results for the regression coefficient displayed in Table 5 confirm the findings

from the first insurance measure. For the standard case of uninformative signals, current con-

sumption growth reacts with a coefficient of 0.32 too sensitively to changes in current income.

With better information, the sensitivity decreases to 0.29 for κ̃ = 0.21 as upper value estimated
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Table 5: Income and consumption growth regression: SIM model

κ̃ = 0.00 κ̃ = 0.12 κ̃ = 0.21 κ̃ = 0.78 Data

β∆yt 0.32 0.31 0.29 0.20 0.11
β2 −0.03 −0.01 0.01 0.12 –

T-cov(∆ct,∆yt) 0.00 0.00 0.00 0.01 0.00
T-cov(∆ct,∆yt+1) 0.74 0.91 0.94 0.10 –

Notes: SIM model. In the table, we provide regression coefficients and their p values for the regression
∆cit = β0+β′∆yi+εit, with β = [β∆yt , β2]′ and ∆yi = [∆yit,∆y

i
t+1]′. No signals is κ̃ = 0.00. T-cov(∆ct, ·)

reports p-values for the covariances to be significantly different from zero.

by Dominitz (1998). Even for a very high κ̃ = 0.97, the coefficient β∆yt is with a value of

0.17 too high compared to the data. As signals become informative, the SIM model predicts

that current consumption growth is counter-factually correlated with future income growth.

For uninformative signals and informative signals with precisions below κ̃ = 0.78, current con-

sumption growth is uncorrelated with income growth one period ahead on a 10% significance

level (see the first three columns). However, the regression coefficient of current consumption

with current income growth of 0.20 is still too high compared to the 0.11 estimated in the data.

From κ̃ = 0.78 onwards, the correlation of current consumption growth with income growth

one period in the future is statistically significantly different from zero and with a coefficient

of β2 = 0.12 also economically significant (see the fourth column). The non-zero correlation

is inconsistent with the evidence provided in Blundell, Pistaferri, and Preston (2008) who find

correlations of current consumption growth with future income growth not significantly different

from zero.

The logic behind the non-zero correlation of current consumption with future income growth

in the SIM model can be rationalized as follows. In the SIM model, better information reduces

directly the income fluctuations households want to insure and thus decreases their incentives

for precautionary savings. Knowing more about future income further allows households to

better self-insurance their income risk. As a consequence, before the income shock realizes,

households’ consumption today reacts to the part of the future income shock that is known in

advance, and consumption today is correlated with future income when signals become precise

enough.

For κ̃ = 0.78 as the highest value for κ̃ that yields no counterfactual correlation of current

consumption with future income growth, the risk-sharing ratio falls with 0.50 however short

compared to the 0.60 observed in the data.
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6 Conclusions

In this paper, we have developed a framework to address the issue of a potential disconnect

between households’ income uncertainty and the income uncertainty as measured by an econo-

metrician raised by Browning, Hansen, and Heckman (1999) and Cunha and Heckman (2016).

To that end, we have developed a consumption risk-sharing model that can distinguish between

the two types of uncertainties in a systematic and consistent way.

To quantify the difference in the perception of uncertainty, we have employed a general equi-

librium model with endogenous borrowing constraints. Using US micro data, we have found

that there is a systematic uncertainty gap: households’ perceived income uncertainty is 12%

lower than the uncertainty estimated by an econometrician that is typically used in consumption

risk sharing models. For this uncertainty gap, the model jointly explains three distinct con-

sumption risk-sharing and insurance measures that are not captured in the absence of advance

information: (i) the cross-sectional variance of consumption, (ii) the covariance of consumption

with income growth, and (iii) the income-conditional mean of household consumption. Further,

the model performs well across several over-identifying restrictions test and the uncertainty gap

of 12% is also consistent with direct estimates on the predictive value of subjective expectations

in forecasting earnings.

With their recent paper, Heathcote, Storesletten, and Violante (2016) contribute to a lively

debate on the optimal progressivity of taxes in the United States. One of the main arguments

in favor for a progressive tax system is that it helps to insure idiosyncratic earnings uncertainty

when private insurance is limited. Thereby, a higher tax progressivity reduces the earnings risk

after taxes. Computing the optimal tax progressivity requires a precise estimate for households’

earnings uncertainty. In particular, if there is a systematic uncertainty gap as suggested in this

paper and income uncertainty is actually lower than what is typically considered, less tax

progressivity might be desirable than conventional wisdom suggests.
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A Appendix

A.1 Proof of Proposition 1

The first order conditions for agents with a low income and a high signal in the first period are

u′(clh,1)

4
− λrs1

4
= 0, κ

u′(clhh,2)

4
− κλ

rs
2

4
= 0, (1− κ)

u′(cllh,2)

4
− (1− κ)

λrs2
4

= 0

Dividing through by κ and (1− κ) implies that clh,1, c
lh
h,2, c

ll
h,2 have the identical marginal effect

on social welfare. Thus, as long as the amount of resources is identical in both periods, we get

λrs1 = λrs2 and thus clh,1 = cllh,2 = clhh,2 = clh. The first order conditions for consumption of agents

with a high income and a high signal in the first period can be written

u′(chh,1)

4
+ λh,pch u′(chh,1)− λrs

4
= 0

κ
u′(chhh,2)

4
+ λh,pch κu′(chhh,2)− κλ

rs

4
= 0

(1− κ)
u′(chlh,2)

4
+ λh,pch (1− κ)u′(chlh,2)− (1− κ)

λrs

4
= 0

It follows that chh,1 = chlh,2 = chhh,2 = chh. In a similar way, we get chl,1 = chll,2 = chhl,2 = chl ,

cll,1 = clll,2 = clhl,2 = cll, and consumption of high-income agents follows directly from the binding

participation constraints

2u(chh) = u(eh,1) + κu(eh,2) + (1− κ)u(el,2) ≥

2u(chl ) = u(eh,1) + (1− κ)u(eh,2) + κu(el,2).
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1. The conditional mean of consumption of high-income agents is ch = (chh + chl )/2 such that

the derivative of it with respect to κ is

∂ch

∂κ
=
u(eh,2)− u(el,2)

2

(
1

u′(chh)
− 1

u′(chl )

)
≥ 0

From resource feasibility it follows immediately that the conditional mean of consumption

for low-income agents decreases in κ.

2. The conditional mean of consumption of high-income agents increases because chh increases

by more than chl decreases. Thus, the conditional mean increases by less than chh such that

(chh − ch)2 and (clh − ch)2 increase, and therefore also the conditional standard deviation

of consumption of high-income agents. For low-income agents there are two cases, either

both enforcement constraints are slack or the enforcement constraints of low-income agents

with a high signal bind (for sufficiently high precision). In the first case, the conditional

standard deviation is zero because consumption of low-income agents is independent from

signal realizations, i.e., clh = cll = cl. In the second case, it follows from the enforcement

constraints that clh is increasing in κ. From the first part, we get that the conditional mean

of consumption of low-income agents decreases which implies that cll decreases by more

than clh increases such that also the conditional standard of consumption for low-income

agents increases in this case.

3. The unconditional mean of consumption in both periods equals ē = (eh + el)/2 such that

the unconditional variance is

1

4

[
(chh − ē)2 + (chl − ē)2 + (clh − ȳ)2 + (cll − ē)2

]
.

The first two terms increase in κ because chh increases by more than chl decreases (see

the first part), irrespectively whether chl is larger or smaller than ē. When enforcement

constraints of low-income agents are all slack, clh = cll = cl decreases in κ (see the first part)

such that the last two term collapse and increase in κ. Mean consumption of high-income

agents is always larger than the income mean: enforcement constraints of high-income

agents bind, for uninformative signals, chl = chh = ch > ē, and increases in κ further

increase ch. Thus, (clh + cll)/2 < ē, and only clh > ē is possible. When enforcement

constraints of low-income agents with a high signal bind, their consumption increases in
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κ. However, only if clh < 0, one of the last terms can decrease when κ increases. From the

previous part, we get that cll decreases by more than clh increases such that the sum of

the two last terms increases even when clh < 0, and as a result the unconditional standard

deviation of consumption increases in κ.

A.2 Signal processes and consistency

In this section, we analytically characterize the Markov process of signals that satisfies the two

consistency requirements outlined in Section 3. The main messages in this section are first

that in general the consistent stochastic process of signals depends on the stochastic process

of endowments and on the precision of signals. In case of a symmetric transition matrix for

endowments, consistent signal transition probabilities are independent of signal precision and

consistency requires the signals to follow the same stochastic process as endowments.

A.2.1 Symmetric endowment transition matrix

In this subsection, we show that if and only if signals follow the same stochastic process as

endowments, the two consistency requirements are satisfied and that this result does not de-

pend on signal precision. If signals were to follow a different process then at least one of the

requirements is violated. For the analytical results, we consider an endowment process with two

values yl and yh and a symmetric transition between endowment states. The transition matrix

for these two endowment states is given as

P =

 p 1− p

1− p p


where rows represent the present endowment state and columns represent the future endowment

states. For p = 0.5, endowment states are i.i.d.

Proposition 2 Consider a Markov endowment process with transition matrix P and informa-

tive signals with κ ∈ (0.5, 1).

(i) If signals follow the same stochastic process as endowments then both consistency require-

ments are satisfied.
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(ii) Consider a Markov process for signals with transition matrix P̃

P̃ =

 p̃ 1− p̃

1− p̃ p̃


and 0 < p̃ < 1, p̃ 6= p. Then Consistency Requirement II is violated.

Proof.

(i) When signals follow the same transition probabilities as endowments, the transition prob-

abilities of s can be computed and are then summarized in the transition matrix Ps.

For example, the probability of a low endowment and a low signals conditional on a low

endowment and signal is

π
(
y′ = yl, k

′ = yl|k = yl, y = yl
)

= p
κp

(1− κ)(1− p) + pκ
.

The unique stationary distribution corresponding to the transition matrix Ps is given by

π(y, k) =



π(yl, kl)

π(yl, kh)

π(yh, kl)

π(yh, kh)


=



κp− p
2 −

κ
2 + 1

2

κ
2 + p

2 − κp
κ
2 + p

2 − κp

κp− p
2 −

κ
2 + 1

2


Adding the first two and last two rows show that Consistency Requirement I is satisfied.

Further, the probabilities of signals conditional on endowments can be computed from the

invariant distribution. For example, the probability of a low signal conditional on a low

endowment can be computed as

π(k = yl|y = yl) =
κp− p

2 −
κ
2 + 1

2

κp− p
2 −

κ
2 + 1

2 + κ
2 + p

2 − κp
= 2κp− κ− p+ 1.

To check for the Consistency Requirement II, we consider present endowment y = yl and

future endowment y′ = yl (the other transitions can be computed in the same way and
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are omitted here)

π̂(y′ = yl|y = yl) =
∑
k∈Y

π(y′ = yl|y = yl, k)π(k|y = yl)

=
κp

κp+ (1− κ)(1− p)
(2κp− κ− p+ 1) +

p(1− κ)

κ(1− p) + p(1− κ)
(κ+ p− 2κp)

= p

which is also satisfied. From the other side, for the transition from low endowment today

to low endowment in the future, Requirement II calls for

p
.
=
∑
k∈Y

π(y′ = yl|y = yl, k)π̂(k|y = yl),

which has as unique solution π̂(k = yl|y = yl) = 2κp−κ−p+1 which completes the proof

of part (i).

(ii) The general symmetric transition matrix for signals P̃ results in a joint transition matrix

for signals and endowments P̃s and in a unique invariant distribution for endowment and

signals π̃(y, k) with a unique conditional probability π̃(k = yl|y = yl). If an only if p̃ = p,

it is π̃(k = yl|y = yl) = π̂(k = yl|y = yl) = 2κp − κ − p + 1. Thus, Requirement II is

violated for p̃ 6= p. Requirement I is satisfied because
∑

k π̃(yl, k) = 1/2 =
∑

k π̃(yh, k) for

any 0 < p̃ < 1.

As an immediate implication of the proposition, i.i.d. signals violate Requirement II when

endowments are persistent.

A.2.2 Non-symmetric endowment transition matrix

We continue our analysis with considering the case of non-symmetric endowment transitions. As

before, we consider a two-state endowment process but now the endowment transition matrix

is more general and given by

Pg =

 p11 1− p11

1− p22 p22


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where rows represent the present endowment state and columns represent the future endowment

states, 0 < p11, p22 < 1, and p11 6= p22.

Proposition 3 Consider a Markov endowment process with transition matrix Pg and informa-

tive signals with κ ∈ (0.5, 1).

(i) The transition matrix for signals that satisfies Consistency Requirement II is

Pk =

 pk11 1− pk11

1− pk22 pk22


with pk11 = p22(1− κ) + κp11 pk22 = p11(1− κ) + κp22.

(ii) Signals that follow the transition Pk also satisfy Consistency Requirement I.

Proof.

(i) The logic of the proof is to treat the signal transition probabilities pk11, p
k
22 as unknown

and use the two equation imposed by second consistency requirement to solve for these

probabilities. To satisfy the second consistency requirement the following two equations

must be satisfied

p11 =
∑
k∈Y

π(y′ = yl|y = yl, k)π(k|y = yl) (18)

p22 =
∑
k∈Y

π(y′ = yh|y = yh, k)π(k|y = yh). (19)

The conditional probabilities π(k|y = yl), π(k|y = yh) are functions of the signal transition

probabilities, the conditional probabilities of a high and low income are given by the for-

mulas in the text and does not depend on the signal transition probabilities. Solving first

for the invariant distribution of income and signals as a function of pk11, p
k
22. From there,

the conditional probabilities π(k|y = yl), π(k|y = yh) can be computed in several steps

resulting in tedious expressions that are not reported here. Substituting these expressions

in (18) and (19) and solving for pk11, p
k
22 eventually gives

pk11 = p22(1− κ) + κp11 pk22 = p11(1− κ) + κp22
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if the following two regularity conditions hold

p22(1− κ) + κp11 < 1 p11(1− κ) + κp22 < 1

which are satisfied for κ ∈ [0, 1] and 0 < p11, p22 < 1.

(ii) The invariant distribution of income (yl, yh) is given by

π(yl, yh) =

(
1− p22

2− p11 − p22
,

1− p11

2− p11 − p22

)
.

Using the expressions for pk11, p
k
22 and from part (i), results in the following invariant

signal-income distribution

π(y, k) =



π(yl, kl)

π(yl, kh)

π(yh, kl)

π(yh, kh)


=



− (1−p22)(κ+p11−2κp11−1)
2−p11−p22

(1−p22)(κ+p11−2κp11)
2−p11−p22

− (1−p11)(κ+p22−2κp22−1)
2−p11−p22

(1−p11)(κ+p22−2κp22)
2−p11−p22


.

Adding the first two and the last two rows produces π(yl, yh) such that the first consistency

requirement is satisfied as well.

The results summarized in the proposition generalize the findings for symmetric transitions.

The signal transition matrix depends in general on the precision of signals. Only when the

income transition is symmetric, the transition probabilities for signals are independent of κ and

are given by the corresponding income transition probabilities.

Unlike in the case of symmetric income transition, i.i.d. signals now neither satisfy the

first nor the second consistency requirement. The rationale why now also the first requirement

is violated is as follows. Without loss of generality, consider p11 > p22 such that the ergodic

distribution is characterized by π(yl) > π(yh). With p11 > p22, a larger fraction of households

with a low income should receive a low signal than households with a high income receive a high

signal. For i.i.d. signals, the fractions are equal. As a consequence, households underestimate

the fraction of people with a low income and over estimate the fraction of households with a

high income.
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Consistency requirements

I, max(|π̂(y)− π(y)|) II, max(|π̂(y′|y)− π(y′|y)|)

i.i.d. signals 0.0115 0.1620
consistent signals 3.70e− 16 2.11e− 16

Table 6: Consistency requirement results with persistent endowments

For N > 2, we apply a numerical procedure. For each κ, we use the N2 − N restrictions

imposed by Consistency Requirement II to solve for the transition probabilities pkij . Then we

check whether the first consistency requirement is satisfied given the probabilities pkij . In Table

6, we also compare both signal processes using the endowment process employed for computing

the quantitative results in the main text for κ = 0.99 as an extreme case. As displayed in the first

row of the table, i.i.d. signals fail both consistency requirements. The inconsistency following

from i.i.d. signals is not negligible. On average, i.i.d. signals imply a perceived transition

that differs from the true transition by 16%. When we compute signal transition probabilities

according to the numerical procedure, the second requirement is satisfied by construction, while

the first requirement – in line with the second part of Proposition 3 – is satisfied, too.

A.3 Risk sharing with private signals

Consider the two-period exchange economy described in Section 2 but with signals on agents’

future income realizations that are only observed by the agents.14 Let cji,1 be first-period

consumption of agents with reported private signal ni and endowment ej and cjki,2 second-period

consumption of agents with reported private signal ni and endowment ej in the first period and

endowment ek in the second period with i, j, k ∈ {l, h}. We focus on allocations with truthfully

reported private signals. Let ν denote the precision of private signals.

The enforcement and resource feasibility constraints are again given by (2)-(5) and the

resource constraints (6)-(7) with κ = ν. Private information gives rise to another set of incentive

constraints, truth-telling constraints that are given by the following expressions for high-income

agents with a good and bad private signal

u(chh,1) + νu(chhh,2) + (1− ν)u(chlh,2) ≥ u(chl,1) + νu(chhl,2) + (1− ν)u(chll,2) (20)

u(chl,1) + νu(chll,2) + (1− ν)u(chhl,2) ≥ u(chh,1) + νu(chlh,2) + (1− ν)u(chhh,2) (21)

14 Broer, Kapička, and Klein (2017) consider a limited commitment model in which household income is
unobservable.
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and for low-income agents with a good and bad private signal

u(clh,1) + νu(clhh,2) + (1− ν)u(cllh,2) ≥ u(cll,1) + νu(clhl,2) + (1− ν)u(clll,2) (22)

u(cll,1) + νu(clll,2) + (1− ν)u(clhl,2) ≥ u(clh,1) + νu(cllh,2) + (1− ν)u(clhh,2) (23)

An efficient allocation is a consumption allocation, {cji,1, c
jk
i,2}, that maximizes ex-ante utility

(1), subject to the enforcement constraints (2)-(5) and the resource constraints (6)-(7) with

κ = ν, and truth-telling constraints (20)-(23).

With private information, consumption cannot be perfectly smoothed across states and both

time periods conditional on the income-signal pair in the first period because of truth-telling.

Agents with a low private signal are discouraged to report a high-signal type by threatening

them with a particular low consumption for high-private signal households in case of a low

income in the second period. To compensate for this lack of insurance, efficient allocations

prescribe a high consumption in case of a high income in the second period to high-signal

households. This however makes smoothing across states and time impossible.

As illustrated in Figure 3, we find that numerically increases in private-signal precision

lead to qualitatively similar changes in unconditional moments and welfare as summarized in

Proposition 1 for public signals. While welfare decreases, volatility of consumption increases

when signals become more precise. Compared to public information, private information in-

troduces additional welfare costs for informative signals. For this reason, welfare is lower and

consumption is more dispersed with private than with public signals.

A.4 Joint distribution of endowments and signals

In this subsection, we explain how to derive the formulas (9) and (10) stated in the main text.

Further, we explain the logic behind the assumption that the stochastic process for signals

shares the transition probabilities with the process for individual endowments of effective labor

units.
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Precision of public and private signals, κ, ν
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Figure 3: Two-period model. Welfare and consumption dispersion as functions of public and
private information.

A.4.1 Formulas on the joint distribution of endowments and signals

We start with the derivation of the conditional probability of future endowments. Using the

general formula for calculating conditional probabilities, we receive

π
(
y′ = yj |k = ym, y = yi

)
=
π (y′ = yj , k = ym, y = yi)

π (k = ym, y = yi)
.

The conditional probability can be simplified using the identity

N∑
z=1

π
(
y′ = yz|k = ym, y = yi

)
= 1

to replace the denominator with the following expression

π (k = ym, y = yi) =

N∑
z=1

π
(
y′ = yz, k = ym, y = yi

)
.

The joint probability in the numerator is

π
(
y′ = yj , k = ym, y = yi

)
= πijκ

1m=j

(
1− κ
N − 1

)1−1m=j

,
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where πij is the Markov transition probability for moving from endowment i to endowment

z. For all endowment states that are not indicated by the signal, j 6= m, we assume here

that their probability of occurrence conditional on the signal is identical and therefore equals

(1− κ)/(N − 1). For the conditional probability of endowments, the general formula can then

be written as

π
(
y′ = yj |k = ym, y = yi

)
=

πijκ
1m=j

(
1−κ
N−1

)1−1m=j

∑N
z=1 πizκ

1m=z

(
1−κ
N−1

)1−1m=z
(24)

which resembles (9) in the main text. For example, with two equally likely persistent endowment

states, the conditional probability of receiving a low endowment yl in the future conditional on

a high signal k = yh and a low endowment today is given according to (24) by

π
(
y′ = yl|k = yh, y = yl

)
=

(1− κ)π11

(1− κ)π11 + (1− π11)κ
.

The joint transition probability π(s′|s) = π (y′, k′|k, y) can be computed by combining the

conditional probability of income with an assumption on the signal process. With signals

following an exogenous first-order Markov process, the conditional probability π (y′, k′|k, y) is

given by

π
(
y′ = yj , k

′ = yl|k = ym, y = yi
)

= πml
πijκ

1m=j

(
1−κ
N−1

)1−1m=j

∑N
z=1 πizκ

1m=z

(
1−κ
N−1

)1−1m=z
∀k′, (25)

where compared to (10), we used π(k′ = yl|k = ym) = πml because the signal process is

characterized by the same transition probabilities as endowments. In the following, we argue

why we choose signals that share the transition probabilities with individual endowments.

A.5 Numerical algorithm

Given initial wealth a, state s = (y, k), and an interest rate R, households’ problem can be

written recursively as

V (a, s) = max
c,{a′}

{
(1− β)u[c(a, s)] + β

∑
s′

π(s′|s)V ′[a′(a, s; s′), s′]

}
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subject to a budget and a borrowing constraint

c+
∑
s′

π(s′|s)a′(a, s; s′)
R

≤ y + a (26)

a′(a, s; s′) ≥ A(s′), ∀s′. (27)

The borrowing limits satisfy the following equations

UAut(s′) = V ′[A(s′), s′], ∀s′. (28)

The first order conditions are

u′[c(a, s)](1− β) = λ = Va(a, y) (29)

βV ′a[a′(a, s; s′), s′] ≤ u′[c(a, s)](1− β)

R
, ∀s′, (30)

where V ′a[a′(a, s; s′), s′] denotes the derivative of the value function with respect to a′(a, s; s′).

Consider N income states such that s ∈ S = (s1, s2, ...sN2). Consider a grid for a. Start with a

guess of the value function V0 and for the derivative Va,0. From the guess of the value function,

back out the state-dependent borrowing limits A0(s′) from (28).

1. For each pair a, s, solve for the policy functions c0(a, s), {a′0(a, s; s′)} using the N2 +1 first

order conditions (30) and (26). Start with the strict equality for all s′ and solve. Check

borrowing constraints. If not satisfied in some state s′, set a′0(a, s; s′) = A0(s′) and solve

again for c0(a, s) and the remaining a′0(a, s; s′) until no borrowing constraint is violated.

2. Update the derivative of the value function with respect to a using the envelope condition

and the policy function for consumption

Va,1(a, s) = u′[c0(a, s)](1− β)

3. Update the value function according to the Bellman equation to receive V1

V1(a, s) = (1− β)u[c0(a, s)] + β
∑
s′

π(s′|s)V0[a′0(a, s; s′), s′]

4. Continue until convergence in the policy functions, the derivative of the value function
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and in the value function Vn(a, s) = Vn+1(a, s) = V (a, s) is achieved.

5. Then update the borrowing limits solving the following equation for A1

V [A1(s′), s)] = Uaut(s′).

6. Continue until convergence in the policy functions, in the value function (and its deriva-

tive) and in the borrowing limits is achieved.

In the next step, use the policy functions {a′(a, s; s′)} and transition probabilities π(s′|s) to

define an operator T that maps the current probability measures for assets and the income-

signal state into future measures. In the next step, compute the unique fixed point of the

operator T and denote it by Φa,s, the invariant distribution of assets and income-signal states.

Using the invariant distribution compute the excess demand

dK(β) =

∫
c(a, s) d Φa,s +K ′ −K(1− δ)−AF (L,K).

and check whether it is satisfied. If not, decrease β if dK(β) is in surplus and increase β if it is

in deficit, and go back to Step 1. We use a Ridder algorithm until convergence on the discount

factor is achieved and excess demand equals zero.
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