Fixed costs, product heterogeneity and the force of competition

Vladimir Asriyan*, Alberto Martin*, Maria Ptashkina** and Jaume Ventura*

*CREI, UPF and BSE **Princeton and U. Melbourne

September 2024, Vilnius

Share of fixed costs in total costs, US (Compustat)

Share of fixed costs in total costs, US (Compustat)

This paper

- Observations:
 - ► The share of fixed costs in total costs is large (and heterogeneous)
 - This share has has grown substantially over the last decades
 - Similar in other economies: EU, Japan, UK, the World
- Questions:
 - What are the macroeconomic effects of fixed costs?
 - What factors could explain the observed rise in fixed costs?
- Tractable general equilibrium model with:
 - Increasing returns due to fixed costs
 - Ex-ante heterogeneity in product characteristics
 - Competitive markets, i.e., no market power

Roadmap

- 1. The fixed-cost economy
- 2. Understanding the rise of fixed costs
- 3. Concluding remarks

Preferences and technology

- Setup:
 - Continuum of identical individuals with mass L
 - ▶ Continuum of goods, indexed by $z \in [0, \infty)$
 - Labor is the only factor of production
- Preferences:

$$U = \int_0^\infty \frac{\sigma}{\sigma - 1} C(z)^{\frac{\sigma - 1}{\sigma}} dz \quad (\sigma > 1)$$

• Technology:

$$Q(z) = \max \left\{ \frac{L(z) - \phi(z)}{v(z)}, 0 \right\}$$

- $\phi(z) \in [0,\infty)$ and $v(z) \in (0,\infty)$
- Order goods s.t. cost index $I(z) \equiv \phi(z) v(z)^{\sigma-1}$ is non-decreasing
- Assume I(z) is continuous, strictly increasing, and $\lim_{z\to\infty}I(z)=\infty$

Utility maximization

Consumer's problem:

$$\max_{\left\{C(z)\right\}}\ U = \int_{0}^{\infty} \frac{\sigma}{\sigma - 1} C\left(z\right)^{\frac{\sigma - 1}{\sigma}} dz \quad \text{s.t.} \quad \int_{0}^{\infty} P\left(z\right) C\left(z\right) dz \leq W$$

• Solution implies:

$$\lambda P(z) = C(z)^{-\frac{1}{\sigma}}$$
$$U = \frac{\sigma}{\sigma - 1} \lambda W$$

• Normalization: $\lambda = 1$

Producer competition

• Free entry:

- No producer makes losses
- No producer could offer a lower price and make profits
- Note: $\phi(z)$ is a fixed cost, not a sunk cost

Implications

- There is, at most, a single producer operating in each market
- If there is no producer, Q(z) = 0 and $P(z) = \infty$
- If there is a producer, P(z) equals average cost:

$$P(z) = \underbrace{\left(1 + \frac{\phi(z)}{v(z)Q(z)}\right)}_{\text{markup}} v(z)W$$

evaluated at market demand:

$$P(z) = \left(\frac{Q(z)}{L}\right)^{-\frac{1}{\sigma}}$$

Producer competition

- Free entry:
 - No producer makes losses
 - No producer could offer a lower price and make profits
 - Note: $\phi(z)$ is a fixed cost, not a sunk cost
- Implications:
 - There is, at most, a single producer operating in each market
 - ▶ If there is no producer, Q(z) = 0 and $P(z) = \infty$
 - ▶ If there is a producer, P(z) equals average cost:

$$P(z) = \underbrace{\left(1 + \frac{\phi(z)}{v(z)Q(z)}\right)}_{\text{markup}} v(z)W$$

evaluated at market demand:

$$P(z) = \left(\frac{Q(z)}{L}\right)^{-\frac{1}{\sigma}}$$

Inframarginal good: $z < \bar{z}$

Marginal good: $z = \bar{z}$

General equilibrium

Result 1. There is a unique equilibrium, which is characterized by the solution to:

$$P(z) = \begin{cases} \min P & \text{s.t. } P^{1-\sigma}L = \left[v(z)P^{-\sigma}L + \phi(z)\right]W & \text{if } z \le \bar{z} \\ \infty & \text{if } z > \bar{z} \end{cases}$$

$$I(\bar{z}) = \frac{1}{\sigma - 1} \left(\frac{\sigma}{\sigma - 1}W\right)^{-\sigma}L$$

$$W = \int_0^{\bar{z}} P(z)^{1-\sigma} dz$$

where $I(z) = \phi(z)v(z)^{\sigma-1}$ and $Q(z) = P(z)^{-\sigma}L$.

- This system delivers prices P(z), measure of active goods \bar{z} and wage W
- Key exogenous elements: (i) market size L, and (ii) schedules $\phi(z)$ and v(z)

Comparative statics

Result 2. An increase in market size L leads to:

- ullet an increase in production Q(z) of goods already produced,
- an increase in measure of goods produced \bar{z} , and
- an increase in wage W.

Intuition: spread fixed costs over more units \rightarrow lower average costs

Result 3. A uniform fall in fixed costs by a factor of γ^{-1} with $\gamma>1$ has the same equilibrium effects as an increase in market size by a factor of γ .

Result 4. A uniform fall in marginal costs by a factor of γ^{-1} with $\gamma > 1$ leads to:

• an increase in production O(z) of goods already produced by a factor of γ .

- no change in measure of goods produced z̄, and
- an increase in wage W by a factor of $\gamma^{\frac{\sigma-1}{\sigma}}$.

Comparative statics

Result 2. An increase in market size L leads to:

- an increase in production Q(z) of goods already produced,
- an increase in measure of goods produced \bar{z} , and
- an increase in wage W.

Intuition: spread fixed costs over more units \rightarrow lower average costs

Result 3. A uniform fall in fixed costs by a factor of γ^{-1} with $\gamma > 1$ has the same equilibrium effects as an increase in market size by a factor of γ .

Result 4. A uniform fall in marginal costs by a factor of γ^{-1} with $\gamma>1$ leads to

• an increase in production Q(z) of goods already produced by a factor of γ ,

- no change in measure of goods produced z
 , and
- an increase in wage W by a factor of $\gamma^{\frac{\sigma-1}{\sigma}}$

Comparative statics

Result 2. An increase in market size L leads to:

- an increase in production Q(z) of goods already produced,
- an increase in measure of goods produced \bar{z} , and
- an increase in wage W.

Intuition: spread fixed costs over more units \rightarrow lower average costs

Result 3. A uniform fall in fixed costs by a factor of γ^{-1} with $\gamma > 1$ has the same equilibrium effects as an increase in market size by a factor of γ .

Result 4. A uniform fall in marginal costs by a factor of γ^{-1} with $\gamma > 1$ leads to:

- an increase in production Q(z) of goods already produced by a factor of γ ,
- no change in measure of goods produced \(\bar{z}\), and
- an increase in wage W by a factor of $\gamma^{\frac{\sigma-1}{\sigma}}$.

Normative properties

Result 5. The social planner's allocation is characterized by the solutiont to:

$$\begin{split} P^{SP}\left(z\right) &= \begin{cases} v(z)W^{SP} & \text{if } z \leq \bar{z}^{SP} \\ \infty & \text{if } z > \bar{z}^{SP} \end{cases} \\ I\left(\bar{z}^{SP}\right) &= \frac{1}{\sigma - 1} \left(W^{SP}\right)^{-\sigma} L \\ W^{SP}\left(1 - \frac{1}{L} \int_{0}^{\bar{z}^{SP}} \phi(z)dz\right) &= \int_{0}^{\bar{z}^{SP}} P^{SP}\left(z\right)^{1-\sigma} dz \end{split}$$

where
$$I(z) = \phi(z)\upsilon(z)^{\sigma-1}$$
 and $Q^{SP}(z) = P^{SP}(z)^{-\sigma}L$.

- Both production and entry margins are distorted:
 - Prices equal marginal cost instead of average cost
 - Planner values the entire consumer surplus instead of revenue

Result 6. The market equilibrium is inefficient. It features an:

- insufficient product variety, i.e., $\bar{z} < \bar{z}^{SP}$, and
- excessive production of goods with low cost-index, i.e., $Q(z) > Q^{SP}(z)$ for low z.

Normative properties

Result 5. The social planner's allocation is characterized by the solutiont to:

$$\begin{split} P^{SP}(z) &= \begin{cases} v(z)W^{SP} & \text{if } z \leq \overline{z}^{SP} \\ \infty & \text{if } z > \overline{z}^{SP} \end{cases} \\ I\left(\overline{z}^{SP}\right) &= \frac{1}{\sigma - 1} \left(W^{SP}\right)^{-\sigma} L \\ W^{SP}\left(1 - \frac{1}{L} \int_0^{\overline{z}^{SP}} \phi(z)dz\right) &= \int_0^{\overline{z}^{SP}} P^{SP}(z)^{1-\sigma} dz \end{split}$$

where
$$I(z) = \phi(z)\upsilon(z)^{\sigma-1}$$
 and $Q^{SP}(z) = P^{SP}(z)^{-\sigma}L$.

- Both production and entry margins are distorted:
 - Prices equal marginal cost instead of average cost
 - ▶ Planner values the entire consumer surplus instead of revenue

Result 6. The market equilibrium is inefficient. It features an:

- insufficient product variety, i.e., $\bar{z} < \bar{z}^{SP}$, and
- excessive production of goods with low cost-index, i.e., $Q(z)>Q^{SP}(z)$ for low z.

Normative properties

Result 5. The social planner's allocation is characterized by the solution to:

$$P^{SP}(z) = \begin{cases} v(z)W^{SP} & \text{if } z \leq \overline{z}^{SP} \\ \infty & \text{if } z > \overline{z}^{SP} \end{cases}$$

$$I(\overline{z}^{SP}) = \frac{1}{\sigma - 1} (W^{SP})^{-\sigma} L$$

$$W^{SP}\left(1 - \frac{1}{L} \int_0^{\overline{z}^{SP}} \phi(z) dz\right) = \int_0^{\overline{z}^{SP}} P^{SP}(z)^{1-\sigma} dz$$

where
$$I(z) = \phi(z)v(z)^{\sigma-1}$$
 and $Q^{SP}(z) = P^{SP}(z)^{-\sigma}L$.

- Both production and entry margins are distorted:
 - Prices equal marginal cost instead of average cost
 - Planner values the entire consumer surplus instead of revenue

Result 7. The effects on the planner's allocation of an increase in market size L, of a uniform fall in fixed costs $\phi(z)$, or a uniform fall in marginal costs v(z), are the same as in the market economy.

Roadmap

- 1. The fixed-cost economy
- 2. Understanding the rise of fixed costs
- 3. Concluding remarks

Fixed-cost shares

Definitions (t = year):

$$F_t\left(z
ight) \equiv rac{\phi_t\left(z
ight)}{\phi_t\left(z
ight) + \upsilon_t(z)Q_t(z)}$$
 (fixed-cost share of good z)
$$F_t \equiv rac{1}{L_t} \int_0^{ar{z}_t} \phi_t\left(z
ight) dz \quad ext{(aggregate fixed-cost share)}$$

- How can we explain an increase from $F_{1980} \approx 0.17$ to $F_{2019} \approx 0.24$?

Fixed-cost shares

Definitions (t = year):

$$F_t\left(z
ight) \equiv rac{\phi_t\left(z
ight)}{\phi_t\left(z
ight) + \upsilon_t(z)Q_t(z)}$$
 (fixed-cost share of good z)
$$F_t \equiv rac{1}{L_t} \int_0^{ar{z}_t} \phi_t\left(z
ight) dz \quad ext{(aggregate fixed-cost share)}$$

- How can we explain an increase from $F_{1980} \approx 0.17$ to $F_{2019} \approx 0.24$?
- From Results 2-4, fixed-cost shares are:
 - ightharpoonup affected by changes in market size L or (uniform) changes in $\phi_t(z)$, but
 - unaffected by (uniform) changes in $v_t(z)$

Result 7. Suppose $\frac{L_{2019}}{L_{1980}} = \gamma_L > 1$ or $\frac{\phi_{2019}(z)}{\phi_{1980}(z)} = \gamma_\phi < 1$. Then $\bar{z}_{2019} > \bar{z}_{1980}$, and:

$$F_{2019} - F_{1980} = \underbrace{(F_{2019}^{O} - F_{1980})}_{\text{intensive margin}} + \underbrace{\omega(F_{2019}^{N} - F_{2019}^{O})}_{\text{extensive margin}},$$

where:

- O are goods such that $z \leq \bar{z}_{1980}$; 1ω is their market share;
- N are goods such that $\bar{z}_{1980} < z \leq \bar{z}_{2019}$; ω is their market share.

Moreover:

- Intensive margin growth is negative, $F_{2019}^O < F_{1980}$;
- Extensive margin growth is positive, $F_{2019}^N > F_{2019}^O$.

Takeaway: growth in "effective" market size $\gamma\equivrac{\gamma_L}{\gamma_\phi}$ has ambiguous effects on F

Result 7. Suppose $\frac{L_{2019}}{L_{1980}} = \gamma_L > 1$ or $\frac{\phi_{2019}(z)}{\phi_{1980}(z)} = \gamma_\phi < 1$. Then $\bar{z}_{2019} > \bar{z}_{1980}$, and:

$$F_{2019} - F_{1980} = \underbrace{(F_{2019}^{O} - F_{1980})}_{\text{intensive margin}} + \underbrace{\omega(F_{2019}^{N} - F_{2019}^{O})}_{\text{extensive margin}},$$

where:

- O are goods such that $z \leq \bar{z}_{1980}$; 1ω is their market share;
- N are goods such that $\bar{z}_{1980} < z \leq \bar{z}_{2019}$; ω is their market share.

Moreover:

- Intensive margin growth is negative, F^O₂₀₁₉ < F₁₉₈₀;
- Extensive margin growth is positive, $F_{2019}^N > F_{2019}^O$.

Takeaway: growth in "effective" market size $\gamma \equiv \frac{\gamma_L}{\gamma_\phi}$ has ambiguous effects on F

- We perform this procedure:
 - 1. Make an assumption about the growth in "effective" market size $\gamma \equiv \frac{\gamma_L}{\gamma_\phi}$
 - Increase in the US labor force: $\gamma_L=1.6$
 - Three scenarios for technical change: $\gamma_{\phi} \in \left\{1, \frac{2}{3}, \frac{1}{2}\right\}$
 - Therefore, $\gamma \in \{1.6, 2.4, 3.2\}$
 - Use two observations:
 - $F_{1980} = \gamma (1 \omega) F_{2019}^{O}$
 - $F_{2019} = (1 \omega) F_{2019}^O + \omega F_{2019}^N$
 - Therefore:

$$\omega F_{2019}^{N} = F_{2019} - \frac{F_{1980}}{\gamma} \in \{0.126, 0.157, 0.173\}$$

3. Use Compustat data to decompose the product ωF_{2019}^N into its two components...

• Therefore, $\omega \in \{0.25, 0.37, 0.44\}$ and $F_{2019}^N \in \{0.5, 0.42, 0.39\}$

- Take the baseline scenario:
 - 63% of the goods produced in 2019 would have also been produced in 1980. As their markets grew, their average fixed-cost share declined from 17% to 11%.
 - ▶ 37% of the goods produced in 2019 would not have been produced in 1980. Their average fixed-cost share is 42%, about 4 times larger than that of old goods.
- Extensive and intensive margin growth:

γ	Intensive margin growth	Extensive margin growth
1.6	-0.028	0.087
2.4	-0.058	0.117
3.2	-0.076	0.135

An illustrative example

- Consider three economies, low (L), medium (M) and high (H)
- Assume $v_j(z) = 1$ for all j, but:

$$\phi_j(z) = \begin{cases} z^{\alpha_0} & \text{if } z \leq z^* \\ z^{\alpha_j} + (z^{*\alpha_0} - z^{*\alpha_j}) & \text{if } z > z^* \end{cases}$$

for $j \in \{L, M, H\}$, where $\alpha_H > \alpha_M = \alpha_0 > \alpha_L$

- Start at $z = z^*$, so that there is a common initial condition
- What are the effects of an increase in effective market size γ ?

Extensive margin growth

Aggregate fixed-cost share

- Paradoxically, economy where ϕ rises slowest has the highest fixed-cost share!
- This example also gets $F_{2019}^{O},~F_{2019}^{N}$ and ω roughly right for the j=I economy

Inefficiencies

• Welfare loss sizeable: 14.3% in 1980, but declined to 12.7% in 2019

Roadmap

- 1. The fixed-cost economy
- 2. Understanding the rise of fixed costs
- 3. Concluding remarks

What have we learned?

- Questions:
 - What are the macroeconomic effects of fixed costs?
 - What factors could explain the observed rise in fixed costs?
- A tractable general-equilibrium model of the fixed-cost economy:
 - Increases in market size raise quantities produced, raise the measure of goods produced and wages (welfare).
 - Market equilibrium is inefficient since goods are priced at average cost and entry decisions do not value the entire consumer surplus. Inefficiencies appear sizable.
- The evolution of the aggregate fixed cost-share is the balance of intensive and extensive margins of growth. In a baseline scenario:
 - ▶ 63% of the goods produced in 2019 were also produced in 1980. As their markets grew, their average fixed-cost share declined from 17% to 11%.
 - ▶ 37% of the goods produced in 2019 were not produced in 1980. Their average fixed-cost share is 42%, about 4 times larger than old goods.
- On the agenda:
 - ▶ Role of multi-product firms, of geography, and of market power.

Appendix: additional evidence on fixed costs

Share of fixed costs in total costs (Worldscope)

Share of fixed costs in total costs (Worldscope)

Sales and fixed costs, US (Compustat)

Table 1: Dependent variable: (Log) Sales

	(1)	(2)	(3)	(4)
Share of fixed costs in total costs	-4.859*** (0.081)	-5.113*** (0.080)	-5.602*** (0.086)	-5.948*** (0.086)
Constant	13.382*** (0.031)	13.456*** (0.031)	13.599*** (0.032)	13.700*** (0.031)
Observations	265413	265413	265413	265405
R-squared	0.167	0.210	0.251	0.307
Time FE	No	Yes	No	No
Industry FE	No	No	Yes	No
Industry-Time FE	No	No	No	Yes

Standard errors in parentheses

^{*} p < 0.10, ** p < 0.05, *** p < 0.01

Markups, fixed costs and profits

• The markup (price over marginal cost) can be computed as:

$$\mathsf{Markup} \equiv \frac{\mathsf{sales}}{\mathsf{variable}\ \mathsf{costs}} = \frac{\mathsf{total}\ \mathsf{costs}}{\mathsf{variable}\ \mathsf{costs}} + \frac{\mathsf{profits}}{\mathsf{variable}\ \mathsf{costs}}$$

Markups and fixed costs, US (Compustat)

Markups and fixed costs, US (Compustat)

Markups, fixed costs and profits, US (Compustat)

Table 2: Growth decomposition 1960-2020

Period	Markup at the beginning	Markup at the end	% change	Fixed costs	Profits
	of the period	of the period	in markup	contribution	contribution
1960-2020	1.23	1.61	30.81	18.65	12.16
1980-2020	1.28	1.61	25.29	16.19	9.1

Sales and markups, US (Compustat)

Table 3: Dependent variable: (log) sales

(1)	(2)	(3)	(4)
-0.147*** (0.015)	-0.165*** (0.015)	-0.092*** (0.015)	-0.102*** (0.015)
12.184*** (0.034)	12.212*** (0.033)	12.098*** (0.033)	12.114*** (0.033)
244419	244419	244419	244412
0.004	0.036	0.062	0.103
No	Yes	No	No
No	No	Yes	No
No	No	No	Yes
	-0.147*** (0.015) 12.184*** (0.034) 244419 0.004 No No	-0.147*** -0.165*** (0.015) (0.015) 12.184*** 12.212*** (0.034) (0.033) 244419 244419 0.004 0.036 No Yes No No	-0.147*** -0.165*** -0.092*** (0.015) (0.015) (0.015) 12.184*** 12.212*** 12.098*** (0.034) (0.033) (0.033) 244419 244419 244419 0.004 0.036 0.062 No Yes No No No Yes

Standard errors in parentheses

^{*} p < 0.10, ** p < 0.05, *** p < 0.01

Sales and markups, US (Compustat)

Sales and markups in Europe, di Mauro et al. (2023)

Literature review (incomplete!)

- Documenting the rise of fixed costs:
 - De Loecker, Eeckhout, and Unger (2020), Abraham, Bormans, Konings, and Roeger (2020), Sandström (2020), Saibene (2017), De Ridder (2022), Hsieh and Rossi-Hansberg (2023)
- Modeling fixed costs with free entry:
 - Dixit and Stiglitz (1977), Krugman (1980), Baumol (1982), Baumol, Panzer, and Willig (1982), Gilbert (1989)
- Modeling product heterogeneity with free entry:
 - Hopenhayn (1992), Melitz (2003)

Fixed-cost shares across goods

