Fiscal DSGE Model for Latvia

Working Paper Series

No. 81 / 2020
Ginters Bušs
(Latvijas Banka)\(^1\)

Patrick Grüning
(Bank of Lithuania, Vilnius University)\(^2\)

December 2020\(^3\)

\(^1\) Principal Econometrician, Monetary Research and Forecasting Division, Monetary Policy Department, Latvijas Banka, Kr. Valdemara 2a, LV-1050 Riga, Latvia. Email: Ginters.Buss@bank.lv - Tel. +371 67022518.

\(^2\) Principal Economist, Center for Excellence in Finance and Economic Research, Bank of Lithuania, Totorių g. 4, LT-01121 Vilnius, Lithuania. Email: PGrueaning@lb.lt - Tel. +370 5 268 0069; Research Fellow, Faculty of Economics and Business Administration, Vilnius University, Saulėtekio al. 9, 2nd Building, LT-10222 Vilnius, Lithuania.

\(^3\) We would like to thank Oļegs Tkačēvs for his excellent assistance in fiscal matters, Matija Lozej, an anonymous referee, as well as the participants of the Latvijas Banka seminar, the Lietuvos Bankas seminar, the EAGLE Network meeting, and the 3rd ERMEES Macroeconomics Workshop for their helpful comments and constructive suggestions. The remaining errors are ours. The views expressed herein are solely those of the authors and do not necessarily reflect the views of Latvijas Banka, Lietuvos Bankas, or the Eurosystem. Patrick Grüning would like to express his gratitude to Latvijas Banka and the Monetary Research and Forecasting Division (Monetary Policy Department) at Latvijas Banka for their hospitality during his stay in Riga under the auspice of the Schuman Programme, during which the ground work for this paper was done.
© Lietuvos bankas, 2020
Reproduction for educational and non-commercial purposes is permitted provided that the source is acknowledged.
Gedimino pr. 6, LT-01103 Vilnius
www. lb.lt
Working Papers describe research in progress by the author(s) and are published to stimulate discussion and critical comments.
The series is managed by Applied Macroeconomic Research Division of Economics Department and the Center for Excellence in Finance and Economic Research.
All Working Papers of the Series are refereed by internal and external experts.
The views expressed are those of the author(s) and do not necessarily represent those of the Bank of Lithuania.
Abstract

We develop a fiscal dynamic stochastic general equilibrium (DSGE) model for policy simulation and scenario analysis purposes tailored to Latvia, a small open economy in a monetary union. The fiscal sector elements comprise government investment, government consumption, government transfers that are asymmetrically directed to both optimizing and hand-to-mouth households, cyclical unemployment benefits, foreign ownership of government debt, import content in public consumption and investment, and fiscal rules for each fiscal instrument. The model features a search-and-matching labour market friction with pro-cyclical labour costs, a financial accelerator mechanism, and import content in final goods. We estimate the model using Latvian data, study the new channels in the model, and provide a comprehensive analysis on the macroeconomic effects of the fiscal elements. A particular finding is that having foreign ownership of government debt generally breaks the Ricardian equivalence paradigm.

Keywords: Small open economy, Fiscal policy, Fiscal rules, Bayesian estimation

JEL: E0, E2, E3, F4, H2, H3, H6
1 Introduction

In times of monetary policy instruments having been stretched to their extreme, considerations for a more active role of fiscal policy have become increasingly widespread. Specifically, fiscal authorities have to decide on the level of the budget deficit and debt, as well as on the composition and size of budget revenue and expenditure. Thus, fiscal policy and its macroeconomic effects have recently received more attention in policy circles and economic research alike. In particular, budget-neutral reforms have been on the agenda of a number of European Union countries (e.g., Auerbach and Gorodnichenko, 2017; Bussière et al., 2017). Also, the Covid-19 crisis has required swift and bold government involvement. Therefore, it is of utmost importance for policy experts to be able to undertake simulations of fiscal policy in order to evaluate the macroeconomic and fiscal consequences for the country at hand.

In this paper, we develop a fiscal dynamic stochastic general equilibrium (DSGE) model for a small open economy in a monetary union, and estimate it using Latvian data. We build on the policy model of Bušs (2017) designed for the Latvian economy, which features a large number of frictions. In this respect, this paper fills a void in that, before our model, there was no fiscal DSGE model for Latvia that would be used for policy simulation and scenario analysis exercises. Therefore, we introduce a fiscal block into the otherwise already estimated and field-tested DSGE model for Latvia, with the foreign economy being represented by a structural vector auto-regressive (SVAR) model.

The fiscal sector is developed along the following lines. The key government expenditure elements comprise utility-enhancing public consumption, public investment that increases private productivity, and transfers to two types of households (optimizing and hand-to-mouth households). We model unemployment benefits separately from the rest of transfers due to their cyclicity and their role in the wage bargaining process. In the case of public investment and public consumption, a part of public goods is imported from abroad. The revenue side is composed of consumption taxes, labour income taxes, social security contributions by both employers and employees, capital income taxes, and lump-sum taxes (levied solely on optimizing households). We also allow for foreign holdings of domestic government debt – a feature, that is not standard in the literature, and that alters the model behaviour. Fiscal rules describe the reaction of fiscal authorities to the output gap, to deviations of the debt-to-GDP ratio from its targeted level, and to debt-to-GDP ratio growth.

Apart from the fiscal sector, we also describe our approach of modelling pro-cyclical wages, an attribute that has been strongly present in the Latvian data, and that has already been used several times in economic and policy simulations at Latvijas Banka.

We estimate this model using Latvian data for the period 1995:Q2–2018:Q3 using 28 observables, nine of which are fiscal time series. Given the model is made for policy simulations, which may require drawing alternative paths using conditional forecasts, we make sure the model fits the data dynamics well. Our pseudo real-time forecasting exercise suggests the model’s empirical fit is adequate.

Subsequently, the model is used for simulating the macroeconomic effects of shocks to the various budget expenditure and revenue items. Our study reveals the following: (i) an increase in public investment expenditure induces a persistent increase in GDP and aggregate consumption, while maintaining the crowding-in effect for private investment in short term; (ii) the positive effect of raising public consumption on GDP is rather short-lived, with private consumption being crowded out, in line with the substitution effect between private and public consumption goods; (iii) an increase in total transfers induces a positive effect on aggregate consumption mostly because the restricted households...
consume their extra income fully each period.

Also, we conduct a comprehensive analysis of the effects the specific parameter choices and model elements have on the propagation of shocks. Noteworthy results include (i) having foreign-held public debt alters the model behaviour; in particular, it increases the effects of a government sector risk premium shock to the economy, as a share of government interest payments leaves the country; also, it generally breaks the Ricardian equivalence in the case of transfers being exclusively directed to the optimizing households with only the lump-sum tax rule being active, as borrowing money from abroad increases the total amount of money in the economy in the short term; as a result, the optimizing households use this money to buy foreign bonds; the sign of the reaction of consumption and investment depends on the specification of the domestic risk premium; (ii) modelling productive public capital is key to induce persistent effects in response to a shock in public investment expenditure; the extent of the persistence is controlled by the calibrated share of public capital in the aggregate capital bundle; (iii) having a higher share of transfers going to the restricted households increases the correlation between transfers and GDP, and (iv) having the import content in public consumption and public investment lowers – and in some cases makes more negative – the reaction of the domestic economy in response to government expenditure shocks.

We draw upon a few papers for choosing how to specify the fiscal sector in our model. First, we follow Coenen et al. (2013)’s extended New Area-Wide Model (NAWM) model in adding restricted non-Ricardian households, public consumption (as a CES aggregate with private consumption), public investment and capital (as a CES aggregate with private capital and subject to a time-to-build friction), asymmetric government transfers to optimizing and restricted households. Differently from Coenen et al. (2013) and this paper, Clancy et al. (2014) and Schwarzmüller and Wolters (2014) model public capital as an additional input in the intermediate goods firms’ production function and, thus, public capital is not bundled together with private capital and the production function exhibits increasing returns to scale.¹

Second, we allow for fiscal instruments to react to i) deviations in debt-to-GDP ratio from its target, ii) debt-to-GDP growth, and iii) output gap. We also allow for both unanticipated and anticipated shocks in the fiscal rules, but leave only the unanticipated shocks active in estimation. As such, our specification is similar to that of Coenen et al. (2013) and Attinasi et al. (2019) but they do not allow for the debt-to-GDP growth term, and the latter does not allow for output gap term and anticipated shocks. Fiscal rules for public consumption and investment in Ratto et al. (2009) do not feature a reaction term for the debt-to-GDP ratio deviations and anticipated shocks but instead a reaction term for the investment-to-GDP ratio and consumption-to-GDP ratio.

Third, we follow Clancy et al. (2014) by incorporating import content in public consumption and investment. In their model, public goods are composed of both tradable and non-tradable goods. Differently from them, we do not differentiate between tradable and non-tradable goods. Therefore, the import content may affect the production of public goods more strongly in our model. Relatively high import content in government investment implies that an increase in public investment expenditure leads to a considerable increase in imports and thus a net outflow of funds that only eventually would be overcompensated for by the public capital accumulation effect.

Fourth, there is a large literature on endogenous term structures in DSGE models (e.g., van Bins-

¹We have experimented with this approach as well, but saw little difference in model behaviour for appropriate calibrations.
bergen et al., 2012; Falagiarda and Marzo, 2012; Horvath et al., 2017; Rudebusch and Swanson, 2012). However, these models are mostly used for closed economies and since Latvia is a small open economy in a monetary union whose shocks do not influence monetary policy decisions at the union level, we assume that the domestic government bond yield is not fully endogenous. The domestic government bond yield is equal to the domestic nominal interest rate in the steady state. However, we assume that it is driven by government bond-specific exogenous shocks in order to take movements in government bond yield data better into account in the estimation of the model. Moreover, it can positively react to deviations of the government debt-to-GDP ratio to make it partly endogenous and also specific to the government debt dynamics in Latvia.

Finally, our approach for modelling foreign ownership of government debt, as well as the setup of pro-cyclical wages are of our own making. Both of these features enrich the model’s behaviour considerably.

The remainder of this study is structured as follows. Section 2 develops the fiscal dynamic stochastic general equilibrium (DSGE) model for Latvia. Section 3 gives the details about the calibration and estimation of the model, as well as reports the data fitting performance of the model. Section 4 inspects the model behaviour and various channels in terms of standardized shock simulations. Finally, Section 5 concludes.

2 Model

In this paper, we take the model of Bušs (2017), which builds on Bušs (2015) and Buss (2016), as a benchmark and extend it to include a detailed fiscal block. In the following section, we briefly describe the benchmark model and our setup in modelling pro-cyclical wages. This is followed by the detailed description of the fiscal sector model elements in Section 2.2.

2.1 The non-fiscal part of the model

2.1.1 The previous version of the model

The model of Bušs (2017) consists of three main blocks: the core block, the financial frictions block, and the labour market block. We discuss them subsequently.

The core block is similar to Christiano et al. (2005) and Adolfson et al. (2008). There are three final goods – consumption, investment, and exports – which are produced by combining the domestic homogeneous good with specialised imports for each type of final good. Specialised domestic importers purchase the homogeneous foreign good, which they turn into a specialised input and then sell to domestic import retailers. Therefore, there are also three types of import retailers. The first one uses specialised import goods to create the homogeneous good used as an input into the production of specialised exports. The second one uses specialised import goods to create an input used in the production of investment goods. The third type uses specialised imports to produce an homogeneous input used in the production of consumption goods. Exports are defined as a Dixit and Stiglitz (1977) aggregator of export goods varieties produced by a continuum of exporters, each of which is a monopolist that produces a specialised export good. Each monopolist produces its export good using a homogeneous, domestically produced good and a homogeneous good derived from imports. The homogeneous domestic good is produced by a competitive, representative firm. A part of the domestic
good is lost due to real frictions in the model economy arising from investment adjustment and capital utilisation costs.

Households maximise expected lifetime utility from a discounted stream of consumption, subject to habit formation. In the core block, households own the economy’s stock of physical capital. They determine the rate at which the capital stock is accumulated and the rate at which it is utilised. Households also own the stock of net foreign assets and determine the rate of the stock accumulation. Monetary policy is conducted exogenously due to Latvia being a member of the euro area (henceforth, EA) with a very small share of GDP in overall EA GDP. The foreign economy is modelled as a structural vector autoregression (henceforth, SVAR) in EA output, inflation, nominal interest rate, and unit-root technology growth, as well as foreign demand, competitors’ export price and nominal effective exchange rate. The latter three variables were added in recent years due to the necessity to use the model in regular forecasting exercises (see Appendix Section B.1 for the foreign block equations). The model economy has one source of exogenous growth, which is the neutral technology growth, and it is identified using the euro area data in the foreign economy block. Several fixed share parameters are subject to technology diffusion as in Schmitt-Grohé and Uribe (2012), and Christiano et al. (2010).

The financial frictions block adds the Bernanke et al. (1999) (henceforth, BGG) financial accelerator mechanism to the model. Financial frictions allow for borrowers and lenders being different people that have different sets of information. Thus, this block introduces “entrepreneurs” who are agents with special skills in the operation and management of capital. Their skill in operating the capital is such that it is optimal for them to operate more capital than their own resources can support by borrowing additional funds. There is a financial friction, because managing capital is risky, i.e. entrepreneurs can go bankrupt, and only entrepreneurs observe their own idiosyncratic productivity without costs. In this setup, households are assumed to deposit their money in banks (which are present only implicitly). The interest rate on household deposits is nominally non-state-contingent. The banks then lend funds to entrepreneurs using a standard nominal debt contract, which is optimal given the asymmetric information.\footnote{Namely, the equilibrium debt contract maximises the expected entrepreneurial welfare, subject to the zero profit condition on banks and the specified return on household bank liabilities.} The amount that banks are willing to lend to an entrepreneur under this debt contract is a function of the entrepreneurial net worth. This is how balance sheet constraints enter the model. When a shock occurs that reduces the value of entrepreneurs’ assets, this cuts into their ability to borrow. As a result, entrepreneurs acquire less capital and this translates into a reduction in investment and leads to a slowdown in the economy. Although individual entrepreneurs are risky, banks are not. The financial frictions block introduces two endogenous variables into the model: the spread between the interest rate paid by entrepreneurs and the risk-free interest rate, and entrepreneurial net worth. There are also two additional shocks, the first one is idiosyncratic uncertainty of entrepreneurs and the second one is a shock to entrepreneurial survival probability, or “entrepreneurial wealth” shock, as it directly affects entrepreneurial net worth.

The labour market block adds the labour market search and matching framework similar to Mortensen and Pissarides (1994), Hall (2005a,b), Shimer (2005, 2012), and Christiano et al. (2016). There is no exogenously imposed wage rigidity, and all changes in the total hours worked are attributed to the extensive margin of labour supply. The model allows for both vacancy posting cost and hiring fixed cost, but only the latter is assumed in our benchmark calibration. The addition of the labour market block splits the production of intermediate goods into wholesaler and retailer blocks as in Christiano et al. (2016).
The wage bargaining process takes place between wholesaler firms and workers. Wholesalers produce the intermediate good using labour which has a fixed marginal productivity of unity. This product of wholesalers is then purchased by retailers to produce specialized inputs for the production of the homogeneous domestic good. The previous version of the model (Bušs, 2017) used the alternating-offer wage bargaining setup, while our current model deviates from that as outlined in the next section.

2.1.2 Modelling wage pro-cyclicality

Some amendments have been made to the model since its published version in Bušs (2017), among which one is related to the wage bargaining process. Bušs (2017) used the alternating-offer bargaining mechanism of Christiano et al. (2016). Although the model could replicate the unemployment dynamics fairly well, the wages in Latvia have been highly pro-cyclical, thus being at odds with the relatively sticky wages of AOB.

Therefore, the current wage bargaining setup in the model is Nash wage bargaining without exogenously imposed wage rigidity but with pro-cyclical worker outside option, generating pro-cyclical wages. In particular, we use a standard Nash sharing rule,

\[J_t = \frac{1 - \eta}{\eta} (V_t - U_t) \]

(1)

where \(J_t \) is the present value of a worker to a firm, \(V_t \) is the present value of a worker being matched with a firm, \(U_t \) is the present value of a worker being unemployed, and the parameter \(\eta \) is the bargaining power of the worker. In the present value of a worker being unemployed,

\[U_t = b_t^u + \beta E_t \psi_{z+,t+1}/\psi_{z+,t} (f_{t+1}V_{t+1} + (1 - f_{t+1})U_{t+1}) \]

(2)

where \(\beta E_t \psi_{z+,t+1}/\psi_{z+,t} \) is the stochastic discount factor, and \(f_t \) is the job finding rate, the search-and-matching literature typically assumes that the present value of unemployment is constant (Christiano et al., 2010), or a constant share of wage at time \(t \) (but as wages are typically modelled relatively acyclical, so is the worker outside option, see Jacquinot et al., 2018).

Here, we deviate from the literature by assuming that \(b_t^u \) is endogenous and pro-cyclical, in particular, linked to the labour market conditions. The practical reason of doing so is that the pro-cyclical worker outside option is a simple mechanism generating pro-cyclical worker bargaining power, thus the much needed pro-cyclical wages. Although we fully acknowledge that this mechanism is not built from micro-foundations and that the true reasons for wage pro-cyclicality may be different (thus more work on this mechanism is justified), it can be reasoned that labour market conditions affect the outside option of a worker. When the labour market is slack – as in a downturn – a worker faces less options of finding a job elsewhere, thus her bargaining power is lower compared to normal or boom times, hence she might accept a lower wage at the current employer. And, vice versa, as the labour market tightens, firms compete for workers more, which is reflected in a higher bargaining power of a worker via her higher outside option; as a result, there is a pressure on labour costs. This mechanism assumes relatively frequent and de-centralized wage re-negotiation, which may suit Latvia, as labour unions in Latvia are scarce.
This mechanism is formalized via linking the worker outside option to the labour market tightness:\footnote{In the codes, the expression is entered in its log form}

\[b_t^u = (b_{t-1}^u)^{\rho_{bu}} (b_t^u)^{1-\rho_{bu}} \left(\frac{1 - L}{1 - L_{t-1}} \right)^{(1-\rho_{nu})\alpha_u} \exp(\epsilon_{bu,t}), \]

(3)

where the term in the large parentheses is the measure of labour market tightness, that is, the unemployment rate relative to the non-accelerating inflation rate of unemployment (NAIRU), the latter being for simplicity assumed constant and equal to the steady state of unemployment rate. The parameter \(\alpha_u \) controls for the sensitivity of the worker bargaining power to the labour market conditions, the persistence parameter \(\rho_{bu} \) allows for persistence in the worker outside option. This expression adds a new shock \(\epsilon_{bu,t} \) to the model, which we interpret as a wage cost-push shock. Note that in the resulting wage setting mechanism, there is no additionally-imposed wage frictions or indexation. Also note that it is straightforward to switch back to the standard Nash bargaining setup by calibrating \(\alpha_u = 0 \).

Figure 1: Data fit for constant versus pro-cyclical worker outside option

\[\text{Standard Nash bargaining with constant worker outside option} \]

\[\text{Nash bargaining with pro-cyclical worker outside option} \]

\[\text{Notes: Data are in solid blue, iterated forecasts are in dotted black. Produced with a linearized model.} \]

From the above expression, it is evident that the worker bargaining power and thus the pressure on wages exhibits a non-linear pattern – the higher is the deviation of the unemployment rate from NAIRU, the increasingly larger is its effect on worker bargaining power and wages. Thus, the mechanism is well-suited for simulating the effects of various policies on labour costs at different stages of a business cycle.
cycle. For example, using the aforementioned modelling mechanism in its simulations, Latvijas Banka (2017) warns about economic overheating, and its negative effects on competitiveness and a subsequent deeper economic downturn. Also, it was used in Latvijas Banka’s internal assessment of the effects of the government’s counter-measures to the Covid-19 crisis, as the measures occurred during the times when workers had limited bargaining power.

Besides using this modelling approach in simulations, it results in a better data fit, as shown in Figure 1.

2.2 The fiscal block of the model

The fiscal block of the model comprises the following elements: public investment, public consumption, import content of public investment and consumption, asymmetric government transfers, with unemployment benefits being modelled separately, government debt, and foreign ownership of government debt. There are six types of taxes: consumption tax, labour income tax, social security contribution (SSC) by employer, SSC by employee, capital income tax, and a lump-sum tax. There are eight fiscal rules that determine fiscal policy. Moreover, we describe in detail the government budget constraint.

Specifically, public investment is used to build the public capital stock that is bundled together with private capital in a constant-elasticity-of-substitution (CES) aggregate before being used in the production of intermediate goods. Building the public capital stock is subject to a time-to-build friction. However, in contrast to building private capital we assume the absence of adjustment costs for building public capital. Hence, public investment is modelled as in Coenen et al. (2013). Additionally, we also follow the aforementioned paper in modelling public consumption. The households now obtain utility from a CES aggregate of public and private consumption. A fraction of both public investment and public consumption is imported from abroad, as in the fiscal-EAGLE model of Clancy et al. (2014). Hence, a fraction of total expenditure on public investment and public consumption is used to buy imported goods from specialized retailers. These government retailers are different from the retailers for private investment and private consumption, with potentially different Calvo price stickiness parameters and market power. The imported goods are bundled in CES fashion with the domestic goods to form the usable public investment and public consumption goods.

Furthermore, we introduce another type of households into our model, namely, restricted (hand-to-mouth) households. These households just consume their disposable income and do not have access to any (financial or real) asset in the economy. Their income consists of private labour income, unemployment benefits, and other government transfers. The government transfers are asymmetric so that, in our baseline calibration, a larger share of them is received by the restricted households. These transfers are not taxed. Our modelling of asymmetric transfers is in spirit similar to the modelling approach taken by Coenen et al. (2013). Unemployment benefits are modelled separately from the rest of transfers, as the former are cyclical and enter the worker outside option.

In the steady state, we fix the shares of government consumption expenditure, public investment expenditure, and government transfers to households as fractions of total government expenditure. Dynamically, these shares adjust according to the three expenditure fiscal rules we introduce in the model. These rules postulate that the government adjusts the government spending (directed to public investment, public consumption, and transfers) in response to deviations of the debt-to-GDP ratio from
target, to debt-to-GDP ratio growth, and to the output gap.4

Furthermore, the government operates a fiscal deficit in the steady state that constitutes a steady-state debt level which is used as a target value in the fiscal rules. Due to the assumed positive steady-state inflation rate and positive steady-state technology growth, a positive deficit in the steady state is congruent to a stationary debt-to-GDP ratio. The government collects labour taxes, social security contributions, and consumption taxes from both households, as well as capital income taxes from entrepreneurs. With these revenues and a lump-sum tax levied on the optimizing households, the government finances the expenditures – public investment, public consumption, transfers, unemployment benefits, and debt interest payments.5 To operate the fiscal debt, short-term domestic government bonds are issued that are held by both the domestic optimizing households6 and the rest of the world. As a result, a part of Latvian debt is held abroad, which is taken into account by the current account equation in the model. Thus, interest payments on debt held abroad are lost to the Latvian economy.

Finally, five more fiscal rules which are modelled in the same fashion as the aforementioned expenditure fiscal rules are added to the model: a consumption tax rate rule, a labour income tax rate rule, social security contribution rules for employees and employers, and a lump-sum tax rule.

In the following sections, the fiscal sector elements are described in detail. Firstly, we introduce public investment into the model. Then, public consumption is added. Thirdly, we describe the changes in the model regarding the labour block and labour taxes. Next, the government budget constraint is given alongside with the debt accumulation process and the fiscal rules that determine fiscal policy in the model. Finally, we conclude the description of the fiscal model elements by stating the aggregate resource constraint and the current account.

2.2.1 Government investment

To incorporate public investment and capital, the capital used in the production function of intermediate goods is given by a CES aggregate of private capital and public capital.7 Building public capital is subject to a time-to-build fraction and needs to be fuelled by public investment expenditure which is determined as an exogenous fraction of total government expenditure in the steady state and via a fiscal rule dynamically.

The production function of the \textit{j}-th intermediate goods producer is:

\[Y_{j,t} = (z_t L_{j,t})^{1-\alpha} \varepsilon_t (\tilde{K}_{j,t})^{\alpha} - z_{t+} \phi, \]

where \(L_{j,t} \) denotes the labour input, \(\phi \) is fixed cost of production, \(z_t, z_{t+} \) are technology shocks, and the capital bundle \(\tilde{K}_t \equiv \tilde{K}_{j,t} \) is a CES aggregate of private capital \(K_t \equiv K_{j,t} \) and public capital \(K_{g,t} \):

\[\tilde{K}_t = \left(\frac{1}{\alpha_k} (K_t) \frac{\nu_k - 1}{\nu_k} + (1 - \alpha_k) \frac{1}{\nu_k} (K_{g,t}) \frac{\nu_k - 1}{\nu_k} \right)^{\frac{\nu_k}{\nu_k - 1}}, \]

4See Bušs, Grüning and Tkačevs (forthcoming) “Choosing the European Fiscal Rule”, for the fiscal rule specifications closer to the definitions by the European Commission.

5Additionally, there is wasteful spending, which is constant and exogenous, and has a role of a residual in the steady state.

6They need to pay quadratic adjustment costs for holdings in excess of an amount they can hold for free.

7As an alternative, we have experimented with public capital as an additional factor in the production function. Our preliminary results suggest that, with proper calibration, both specifications yield a similar model behaviour.
with elasticity of substitution denoted by \(\nu_k \) and weight on private capital denoted by \(\alpha_k \). Private capital is subject to an endogenous utilization rate, i.e. \(K_t = u_t K_t \), where \(K_t \) is the total amount of capital in the economy. The amount of public capital accumulates according to the following equations, where public investment \(G_{i,t} \) obeys a condition that incorporates a two-period lag in building public capital from public investment (instead of a one-period lag in building private capital):

\[
K_{g,t+1} = (1 - \delta_g)K_{g,t} + A_{g,i,t-1}, \quad G_{i,t} = b_0 A_{g,i,t} + b_1 A_{g,i,t-1}.
\]

(6)

Public investment expenditure in the deterministic steady state is an exogenously specified fraction \(\tau_i^g \) of total government expenditure, and public investment expenditure is split into expenditure directed towards the domestic good and the imported public investment good (with price \(p_{t}^{m,g,i} \)) as follows:

\[
G_{i,ss}^d = \tau_i^g G_{ss}, \quad G_{i,t}^d = G_{i,t} + p_t^{m,g,i} C_{i,t}^m.
\]

(7)

Public investment is a CES aggregate of the domestic good \(G_{i,t}^d \) and the imported good \(G_{i,t}^m \):

\[
G_{i,t} = \left(1 - \omega_{g,i} \right) \frac{1}{\eta_{g,i}} \left(G_{i,t}^d \right)^{\eta_{g,i}-1} \left(G_{i,t}^m \right)^{\eta_{g,i}} + \left(\omega_{g,i} \right) \frac{1}{\eta_{g,i}} \left(G_{i,t}^m \right)^{\eta_{g,i}-1} \left(G_{i,t}^m \right)^{\eta_{g,i}},
\]

(8)

where the fraction of imports is given by the constant \(\omega_{g,i} \) and the elasticity of substitution between the domestic good and the imported good is denoted by \(\eta_{g,i} \). These imported public investment goods are produced by a specialized imports firm using a similar technology and yielding a similar demand condition as for private investment good imports:

\[
G_{i,t}^m = \left[\int_0^1 \left(G_{i,t}^m \right)^{\frac{1}{\lambda_{m,g,i}}} d j \right]^{\lambda_{m,g,i}}, \quad G_{i,t}^{m,d} = G_{i,t}^m \left(p_t^{m,g,i} / p_{t}^{m,g,i} \right)^{\lambda_{m,g,i} / \lambda_{m,g,i}}.
\]

(9)

The total amount of this good imported is (for the trade balance):

\[
S_t P_t^* R_t^* G_{i,t}^{m,d} \left(p_{t}^{m,g,i} \right)^{\lambda_{m,g,i} / \lambda_{m,g,i}},
\]

(10)

where \(S_t \) is the nominal effective exchange rate. The non-linear pricing equations are:

\[
0 = \mathbb{E}_t \left[\psi_{z+t} p_{t}^{m,g,i} y_{t,i} + \left(\frac{z_{t+1}^{m,g,i}}{\pi_{t+1}} \right)^{1 / \lambda_{m,g,i}} \beta \xi_{m,g,i} F_{m,g,i,t+1} - F_{m,g,i,t} \right],
\]

(11)

\[
0 = \mathbb{E}_t \left[\lambda_{m,g,i} \psi_{z+t} m_{c,t}^{m,g,i} y_{t,i} + \left(\frac{z_{t+1}^{m,g,i}}{\pi_{t+1}} \right)^{1 / \lambda_{m,g,i}} \beta \xi_{m,g,i} K_{m,g,i,t+1} - K_{m,g,i,t} \right].
\]

(12)

The first-order conditions with respect to private capital \(K_t \equiv K_{j,t} \) and labour demand \(L_t \equiv L_{j,t} \) in the cost minimisation problem of the intermediate goods firm implies the following two conditions for the marginal cost function \(m c_l \) (after normalization):

\[
\tilde{r}_t^k = \frac{m c_l \alpha_k^{1/\nu_k} \varepsilon_l}{\eta_l} \left(\frac{\bar{K}_{l}}{\mu_{z+t} \hat{L}_{l}} \right)^{\alpha+1/\nu_k-1} \left(\frac{K_{l}}{\mu_{z+t} \hat{L}_{l}} \right)^{-1/\nu_k},
\]

(13)

\[
\tilde{\omega}_t R_t^l = \frac{m c_l (1 - \alpha) \varepsilon_l}{\eta_l} \left(\frac{\bar{K}_{l}}{\mu_{z+t} \hat{L}_{l}} \right)^{\alpha}.
\]

(14)
2.2.2 Government consumption

Government consumption expenditure adds to the utility of households by assuming that the utility bundle is a CES aggregate of private and government consumption.

Specifically, the optimizing household’s preferences are given by the following lifetime utility function:

\[
E_0 \left[\sum_{t=0}^{\infty} \beta^t \left(\xi^c \ln(\tilde{C}_t - b\tilde{C}_{t-1}) \right) \right],
\]

where the utility bundle is defined by the following CES aggregate of private consumption \(C_{o,t}\) and public consumption \(G_{c,t}\) (with elasticity of substitution \(\nu_c\) and weight on private consumption \(\alpha_c\)):

\[
\tilde{C}_t = \left(\alpha_c \frac{1}{\nu_c} (C_{o,t})^{\frac{\nu_c-1}{\nu_c}} + (1 - \alpha_c) \frac{\omega}{\tau} (G_{c,t})^{\frac{\nu_c-1}{\nu_c}} \right)^{\frac{\nu_c}{\nu_c-1}}.
\]

Government consumption expenditure \(G_{c,t}^{exp}\) in the deterministic steady state is calibrated to be a fraction \(\tau_c^g\) of total government expenditure. This expenditure is split into domestic goods purchase of public goods \(G_{c,t}^{d}\) and imported goods purchase of public goods \(p_t m g c G_{c,t}^{m}\) as follows:

\[
G_{c,ss}^{exp} = \tau_c^g G_{ss}, \quad G_{c,t}^{exp} = G_{c,t}^{d} + p_t m g c G_{c,t}^{m}.
\]

Public consumption is a CES aggregate of the domestic good and the imported good:

\[
G_{c,t} = \left((1 - \omega_{g,c}) \eta_{g,c} (G_{c,t}^{d})^{\frac{\eta_{g,c}-1}{\eta_{g,c}}} + (\omega_{g,c}) \eta_{g,c} (G_{c,t}^{m})^{\frac{\eta_{g,c}-1}{\eta_{g,c}}} \right)^{\frac{1}{\eta_{g,c}-1}},
\]

where \(\omega_{g,c}\) is the fraction of imports in public consumption and the elasticity of substitution is denoted by \(\eta_{g,c}\). Imported public consumption goods are produced by a specialized import firm using the same technology as the private consumption good import firm and yielding a similar demand condition:

\[
G_{c,t}^{m} = \left[\int_0^1 (G_{c,j,t}^{m})^{\frac{1}{\lambda_{m,c}}} dj \right]^2, \quad G_{c,j,t}^{m} = G_{c,t}^{m} \left(P_t m g c / p_{j,t}^{m g c} \right)^{\frac{\lambda_{m,c}}{1-\lambda_{m,c}}},
\]

The total amount of this imported good is (for the trade balance):

\[
S_t P_t^{2} R_t^{c,s} G_{c,t}^{m} (P_t m g c)^{\frac{\lambda_{m,g,c}}{1-\lambda_{m,g,c}}},
\]

The non-linear pricing equations are:

\[
0 = E_t \left[\psi_{z+,t} p_t m g c / p_{t+1}^{m g c} g_{c,t}^{m} + \left(\pi_{m,g,c}^{m} / \pi_{t+1}^{m g c} \right) \frac{1}{\lambda_{m,g,c}} \xi_{m,g,c} F_{m,g,c,t-1} - F_{m,g,c,t} \right],
\]

\[
0 = E_t \left[\lambda_{m,g,c} \psi_{z+,t} p_t m g c / p_{t+1}^{m g c} m c_{t}^{m g c} g_{c,t}^{m} + \left(\pi_{m,g,c}^{m} / \pi_{t+1}^{m g c} \right) \frac{1}{\lambda_{m,g,c}} \xi_{m,g,c} K_{m,g,c,t-1} - K_{m,g,c,t} \right].
\]

The first order condition for choosing private consumption in the optimizing household’s optimization problem is therefore given by:

\[
\left(\frac{\tilde{C}_t + \omega_{g,c} G_{c,t}^{m} - \psi_{z+,t} p_t^{c} (1 + \tau_c^g)}{\tilde{C}_t + \omega_{g,c} G_{c,t}^{m} - \psi_{z+,t} p_t^{c}} \right) \frac{\frac{1}{\nu_c} C_{o,t}^{\frac{1}{\nu_c}} \tilde{C}_t^{\frac{\nu_c}{\nu_c-1}}}{\alpha_c} - \beta b E_t \left[\frac{\tilde{C}_{t+1}^{\frac{\nu_c}{\nu_c-1}}}{\tilde{C}_t + \omega_{g,c} G_{c,t}^{m} - \psi_{z+,t} p_t^{c}} - \psi_{z+,t} p_t^{c} (1 + \tau_c^g) \right] = 0.
\]
2.2.3 Government transfers and restricted households

Government transfers (less unemployment benefits) TR_t to both optimizing and restricted (hand-to-mouth) households are present the model. These transfers are such that in the steady state they are an exogenously given percentage τ_{tr} of total government expenditure:

$$TR_{ss} = \tau_{tr} G_{ss}. \quad (24)$$

Dynamically, transfers follow a fiscal rule, specified in Section 2.2.5. These transfers are split into transfers to optimizing and restricted households. We assume that there is a share λ_r of restricted households so that the remaining share $1 - \lambda_r$ is the mass of optimizing households. Total transfers are split according to the following distribution rule:

$$TR_t = \lambda_r TR_{r,t} + (1 - \lambda_r)TR_{o,t}, \quad \tau_{tr} \cdot TR_{o,t} = (1 - \tau_{tr})TR_{r,t}, \quad (25)$$

where $TR_{r,t}$ denotes the transfers to restricted households and $TR_{o,t}$ the transfers to optimizing households. The constant τ_{tr} determines the fraction of transfers to restricted households. The restricted households do not optimize over their consumption, and just consume their disposable income each period. Their budget constraint is therefore given by:

$$8(1 + \tau_c)C_{r,t} = (1 - \tau_y - \tau_w)\bar{w}_tL_t + D_{b,t}(1 - L_t) + TR_{r,t}. \quad (26)$$

The steady state level of unemployment benefits per unemployed $D_{b,t}$ is calibrated to be a share of steady-state gross wage, $D_b = bshare \cdot \bar{w}$. Dynamically, unemployment benefits per unemployed are endogenous and form a constant share of the worker outside option, $D_{b,t} = bshare \cdot b_{ut}/woo$, where woo is the steady-state share of worker outside option in gross wage.

2.2.4 Adjustments in the labour market block due to taxes

We distinguish between the social security contributions paid by firms and the ones paid by households. Therefore, in the Nash wage bargaining problem, the present value of wages paid by a firm equals:

$$\bar{w}_t^p = (1 + \tau_{ew,t})\bar{w}_t + \rho\beta E_t[\psi_{z+,t+1}/\psi_{z+,t} \cdot \bar{w}_{t+1}^p], \quad (27)$$

where $\tau_{ew,t}$ denotes the employer’s social security contribution rate, which then enters the present value of a worker to a firm:

$$J_t = \vartheta_t^p - \bar{w}_t^p, \quad (28)$$

where ϑ_t^p stands for the present value of marginal revenue. On the contrary, the present value of wages received by the worker is:

$$w_{p,t} = (1 - \tau_y - \tau_{ew,t})\bar{w}_t + \rho\beta E_t[\psi_{z+,t+1}/\psi_{z+,t} \cdot w_{p,t+1}], \quad (29)$$

8Implicitly, we assume that the utility function of restricted households is the same as for optimizing households. In particular, public consumption enters into a CES bundle with private consumption for restricted households as well. However, the particular form of the utility function does not matter for the model’s equilibrium.
where τ^y_t denotes the labour income tax rate, and $\tau^{w,e}_t$ stands for the employee’s social security contribution rate. It enters the present value of work to a worker:

$$V_t = w_{p,t} + A^w_t,$$

where A^w_t is the present value of worker pay-off after separation. The bargained gross wage \bar{w}_t is determined by maximizing the Nash product with respect to wage:

$$\max_{\bar{w}_t} (V_t - U_t)^{\eta} J^{1-\eta}_t,$$

yielding the first-order condition

$$J_t = \frac{1 + \tau^{w,e}_t}{1 - \tau^y_t - \tau^{w,w}_t} \frac{1 - \eta}{\eta} (V_t - U_t).$$

Thus, the presence of labour taxes affects the bargained outcome by altering the shares of surplus going to a worker and a firm.

2.2.5 Government budget, debt, and fiscal rules

Total government expenditure is a constant fraction η_g of GDP in the steady state. The total government expenditure consists of the government consumption expenditure, public investment expenditure, total transfers to households, unemployment benefits expenditure, and interest payments on debt. The residual part is wasteful government expenditure Z_t. Wasteful government expenditure is given by the sum of a constant and an exogenous wasteful spending shock, $Z_t = \bar{Z} + \varepsilon_{g,t}$. This implies the following breakdown of total government expenditure:

$$G_t = G^{exp}_{c,t} + G^{exp}_{i,t} + TR_t + D_{b,t}(1 - L_t) + \ln \left(\frac{R_{g,t}}{1} \right)^{\phi_{g,a}} \cdot D_{g,t} + Z_t.$$ \hspace{1cm} (33)

The debt interest rate $R_{g,t}$ between time t and $t + 1$ equals the foreign interest rate (i.e. Euribor) plus a government-specific risk premium:

$$R_{g,t} = \Phi_{g,t} R^*_t,$$

$$\Phi_{g,t} = \ln(R_{ss}) - \ln(R^*_g) - \tilde{\phi}_{g,a} \left(\frac{A_t}{Y_t} - \frac{A_{ss}}{Y_{ss}} \right) + \tilde{\phi}_{g,r} \left(\frac{D_{g,t}}{Y_t + Y_{t-1} + Y_{t-2} + Y_{t-3}} - \frac{dg_g}{\varepsilon_{g,t}} \right) + \varepsilon_{g,t}^{rp}. \hspace{1cm} (35)$$

Above, A_t denotes the amount of foreign short-term (risk-free) bonds held by the domestic optimizing household between time t and $t + 1$, R^*_g is the foreign nominal (risk-free) interest rate, R_t is the domestic nominal (risk-free) interest rate, $\varepsilon_{g,t}^{rp}$ is a government debt risk premium shock, and $\tilde{\phi}_{g,a}$ and $\tilde{\phi}_{g,r}$ are parameters controlling the sensitivity of the risk premium to the private sector’s net foreign assets (NFA) position and to deviations of the government debt to GDP ratio from target, respectively. Specifically, $\tilde{\phi}_{g,a} > 0$ allows to model a risk premium on government debt depending on the annual government debt to GDP ratio and deviations of the government debt to GDP ratio from target, while $\tilde{\phi}_{g,a} > 0$ allows for spillovers from the private sector’s external debt to the public sector’s risk premium.

On the revenue side, the government levies distortionary taxes on consumption τ^c_t, capital income τ^k_t, labour income τ^y_t, as well as SSC of employers $\tau^{w,e}_t$ and employees $\tau^{w,w}_t$. The total tax revenue T_t
from distortionary and lump-sum taxes $T_{ls,t}$ is given by:

$$ T_t = \tau^T_t p_t^y (\lambda_t C_{r,t} + (1 - \lambda_t) C_{o,t}) + (\tau^w_{t} + \tau^w_{e,t}) L_t \bar{w}_t $$

$$ + \tau^k_t \bar{K}_t ((u_t r^k_t - p_t^i(a(u_t))) / (\mu_t \mu_{z+1,t}) - \delta p^I_t / (\pi_t \mu_{z+1,t})) + T_{ls,t}. $$

(36)

The government budget constraint is given by:

$$ G_t = \text{Deficit}_{g,t} + T_t, $$

(37)

where $\text{Deficit}_{g,t}$ is the fiscal deficit at time t. Real government debt is governed by the following law of motion:

$$ D_{g,t} = D_{g,t-1} / \pi_t + \text{Deficit}_{g,t}. $$

(38)

The steady-state or target level of government debt is denoted by \bar{dgy}. Only a fraction ω_h of government debt is held by domestic households in the steady state, the rest is held abroad. The variable $B_{g,t-1}$ denotes domestic government debt holdings, and the variable $B^*_{g,t-1}$ denotes foreign government debt holdings between time $t - 1$ and t. In particular, domestic households can hold a constant share of the total government debt $\bar{B}_{g,t} = \omega_h D_{g,t}$ freely, and need to pay quadratic adjustment costs $\Gamma_{g,t} = 0.5 \gamma_g (B_{g,t} - \bar{B}_{g,t})^2 / \bar{B}_{g,t}$ at time t for deviating from this level. Therefore, government debt holdings evolve as follows:

$$ D_{g,t} = B_{g,t} + B^*_{g,t}, \quad B_{g,ss} = \omega_h D_{g,ss}. $$

(39)

The optimizing household’s first order condition with respect to government debt holdings is equal to:

$$ B_{g,t} = \left(1 + \gamma^{-1}_g \left(\mathbb{E}^t \left[\frac{\beta \psi_{z+1,t+1}}{\psi_{z+1,t}} \frac{R_{g,t}}{\pi_{t+1} \mu_{z+1,t+1}} - 1 \right] \right) \right) \bar{B}_{g,t} $$

(40)

In the steady state, total government expenditure is a constant fraction of output:

$$ G_{ss} = \eta_g Y_{ss}. $$

(41)

Dynamically, total government expenditure changes due to adjustments in the revenue or expenditure elements of the government budget. The adjustments in the revenue and expenditure elements are controlled by the following eight fiscal rules10, i.e. where X_t is an element of the set $X = \{G_{t,t}^{exp}; G_{c,t}^{exp}; TR_t; \gamma_t^t; \gamma_t^y; \gamma_t^w; \gamma_t^{w,t}; T_{ls,t}\}$:

$$ \ln(X_t) = (1 - \rho_x) \ln(X_{ss}) + \rho_x \ln(X_{t-1}) + (1 - \rho_x) \phi_{x,t} \left(\ln \left(\frac{D_{g,t}}{Y_t + Y_{t-1} + Y_{t-2} + Y_{t-3}} \right) - \ln(\bar{dgy}) \right) $$

$$ + (1 - \rho_x) \phi_{x,t} \left(\ln \left(\frac{D_{g,t-1}}{Y_{t-1} + Y_{t-2} + Y_{t-3} + Y_{t-4}} \right) \right) $$

$$ + (1 - \rho_x) \phi_{x,t} \left(\ln(Y_t) - \ln(Y_{ss}) \right) + (1 - \psi_x) \varepsilon_{x,t} + \psi_x \varepsilon_{x,t-1}. $$

(42)

Therefore, the government adjusts the taxes or expenditures by reacting to the deviation of the debt to GDP ratio from the steady state (parameter $\phi_{x,d}$), to the growth rate of the debt to GDP ratio

9Lump-sum taxes are levied on optimizing households. If $T_{ls,t}$ is negative, these are actually transfers.

10Plus, optionally, by exogenous changes to wasteful government spending (suspended in estimation).
(parameter $\phi_{x,dd}$), and to the output gap (parameter $\phi_{x,y}$). Moreover, the government allows for the smoothing of tax rates and expenditures which is controlled by the parameter ρ_x. Finally, anticipated ($\epsilon_{x,t-1}$) or unanticipated ($\epsilon_{x,t}$) fiscal shocks may occur. The size of anticipated shocks relative to unanticipated shocks is controlled by the parameter ψ_x.

The capital income tax follows a simple AR(1) process for simulation purposes only and is not a part of estimation:

$$\ln(\tau^{x}_t) = (1 - \rho_{\tau,k}) \ln(\tau^{x}_k) + \rho_{\tau,k} \ln(\tau^{x}_{t-1}) + \epsilon_{x,k,t}. \tag{43}$$

2.2.6 Aggregate resource constraint and current account

The domestic homogeneous final good is used for wasteful government expenditure, domestic part of public consumption expenditure, domestic part of private consumption, domestic part of public investment expenditure, domestic part of private investment, exports, and several frictional costs. The resource constraint is thus given by:

$$z^+_t(y_t - d_t) = Z_t + C^d_{c,t} + C^d_{t,t} + I^d_t + \left[\omega_x(p^{m,x}_t)^{1-\eta_x} + (1 - \omega_x) \right] \frac{\psi^x}{\psi} \left(1 - \omega_x \right) (\bar{p}^{x}_t)^{1-\eta_x} (\bar{p}^{x}_t)^{-\eta_x} Y^{x}_t, \tag{44}$$

where

$$d_t = \mu G(\bar{w}_t; \sigma_{l-1}) R^{k}_{ft} P^{k_{t-1}} k^{t}_{t-1} \pi^{k_{t-1}} + \left(n_{k_{t},t} \gamma_{k_{t}} Q^{-1} + n_{k_{t},t} \gamma_{k_{t}} \right) \chi_a L_{t-1} + \frac{\gamma_d (b_{g,t} - \bar{b}_g)^2}{2 \bar{b}_g} \tag{45}$$

is a sum of entrepreneur monitoring costs, vacancy posting and recruitment costs, and bond adjustment costs. In the current account, we need to take into account that a part of government debt is held abroad and thus some funds, especially the interest payments on foreign-held debt, are flowing out of the country and are therefore lost to the domestic economy. At the same time, we require that net exports are zero in the steady state. In order to retain this property with the aforementioned new outflow of funds, we have to introduce a new transfer Γ_f from abroad\(^\text{11}\). This transfer is constant, received by the optimizing household, and just used to balance exports with imports in the steady state. The current account is balanced dynamically by adjustments in the optimizing household’s holdings of foreign short-term risk-free bonds a_t and by adjustments in the net exports balance nx_t:

$$nx_t = \text{exports}_t - \text{imports}_t \tag{46}$$

$$= q_t \bar{p}^{x}_t x_t - q_t \bar{p}^{x}_t R^{v_x}_t \left(c^m_t (p^{m,c}_t)^{\lambda_{m,x}} + g^{m}_{c,t}(p^{m,g,c}_t)^{\lambda_{m,g,c}} + i^m_t (p^{m,i}_t)^{\lambda_{m,i}} \right. \tag{47}$$

$$\left. + g^{m}_{t,t}(p^{m,g,i}_t)^{\lambda_{m,g,i}} + x^m_t (p^{m,x}_t)^{\lambda_{m,x}} \right),$$

where $q_t = S_t P_t / P_{c,t}$ is the real exchange rate. The definition of the current account is therefore:

$$a_t + \frac{b^{*}_{g,t-1} R^{x}_{g,t-1}}{\pi^{t}_{l} \mu^{+}_{z,t}} = nx_t + \frac{a_{t-1} R^{x}_{t-1} \Phi^{t-1}_{l-1} S_t}{\pi^{t}_{l} \mu^{+}_{z,t}} + b^{*}_{g,t} + \Gamma^{x}_{t}, \tag{48}$$

where $s_t = S_t / S_{t-1}$ is nominal exchange rate growth.

\(^{11}\)This transfer can vaguely proxy for the foreign transfers to Latvia, such as foreign direct investment, EU funds or remittances.
3 Calibration, Estimation, and Data Fit

This section lays out our choices for the parameter calibration (Section 3.1), our estimation approach and its results (Section 3.2), and the data fit of our estimated model (Section 3.3).

3.1 Model calibration

One period in the model corresponds to a quarter. A subset of the model’s parameters are calibrated and the rest are estimated using data for Latvia (domestic part) and the foreign economy.

We calibrate a subset of the parameters to ensure matching key ratios in the model and estimate the remaining parameters, as it is standard practice in estimating DSGE models. We relegate the information about the calibration of the non-fiscal part of the model to Appendix C, as the calibration of that part largely follows Bušs (2017). A few parameters from there are worth mentioning though. First, the share of restricted households is set to 50% in line with other DSGE models (e.g. Attinasi et al., 2019), evidence from Latvian micro-level data, as well as from our exercises of fitting the model to the data.\(^{12}\) Second, the unemployment benefit share of gross wage is set to 0.1 in order to match the unemployment benefit expenditure share in total government expenditures, which is roughly 1% in the recent years (before the Covid-19 recession). As a result, we differentiate between the steady-state level of unemployment benefit share and the worker outside option in the wage bargaining mechanism, as we estimate the steady state of the latter (with the posterior mode typically fluctuating around 0.5).

Moving to the fiscal block, its calibrated parameters are reported in Table 1. Consistent with Latvian data, the steady-state government spending share in GDP is 38%; therefore, we set \(\eta_g = 0.38\).

The steady-state target for the public debt to annual GDP ratio is set to 30%, a value consistent with the long-run average in the data. Also, this calibration implies that the steady-state deficit to GDP ratio is equal to about 0.9% which aligns well with the recent historical data and with the medium term objective for Latvia (structural balance to GDP share of up to -1%) set by the European Commission. A minor part of this debt is held domestically, i.e. within the Latvian economy, in the data, as most of Latvian government debt during the great financial crisis was bought by the European Commission and the International Monetary Fund; after the crisis, there is a slow upward trend of domestically-owned public debt share. Therefore, we assume that only 10% are held by optimizing household in the model, i.e. we set \(\omega_h = 0.1\).

The tax rates are calibrated using the data on the effective tax rates, that is, tax revenues divided to the corresponding tax base. As such, the effective tax rates are typically smaller than the nominal standard tax rates due to both imperfect tax compliance and the existence of alternative tax regimes. The effective tax rates are 15.5% (SSC employer), 6.1% (SSC employee), 21% (consumption: value added tax effective rate 13.5% plus excise tax), and 16.4% (labour income tax rate). We do not have data on the effective capital tax rate, and calibrate it to 10% (formal tax rate on income from renting a property is 10%, while the rate on capital gains and dividends is 20%). We set price markups for imported public consumption and investment in line with their counterparts in the core block, that is, to 1.05. The calibrated import shares for public consumption and public investment are \(\omega_{g,c} = 0.13\) and \(\omega_{g,i} = 0.45\), respectively. For those, we use input-output tables, and adjust the numbers upwards in line with the calibrated imports shares for the private sector, which are also calibrated higher than what input-output tables would suggest. We assume that 70% of government transfers are directed to

\(^{12}\)Our data fitting exercises suggest a 50–60% share of restricted households.
Table 1: Calibrated parameters, fiscal block

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>η_g</td>
<td>0.3800</td>
<td>Steady-state government spending share per GDP</td>
</tr>
<tr>
<td>d_{gy}</td>
<td>0.3000</td>
<td>Target of government debt per annual GDP</td>
</tr>
<tr>
<td>ω_h</td>
<td>0.1000</td>
<td>Share of government debt held domestically</td>
</tr>
<tr>
<td>τ^k</td>
<td>0.1000</td>
<td>Steady-state capital income tax rate</td>
</tr>
<tr>
<td>τ_w^e</td>
<td>0.1550</td>
<td>Steady-state social security contribution rate, employer</td>
</tr>
<tr>
<td>τ_w^e</td>
<td>0.0610</td>
<td>Steady-state social security contribution rate, employee</td>
</tr>
<tr>
<td>τ^c</td>
<td>0.2100</td>
<td>Steady-state consumption tax rate</td>
</tr>
<tr>
<td>τ^y</td>
<td>0.1640</td>
<td>Steady-state labour income tax rate</td>
</tr>
<tr>
<td>$\lambda_{m,g,c}$</td>
<td>1.0500</td>
<td>Price mark-up for imported public consumption good</td>
</tr>
<tr>
<td>$\lambda_{m,g,i}$</td>
<td>1.0500</td>
<td>Price mark-up for imported public investment good</td>
</tr>
<tr>
<td>$\omega_{g,c}$</td>
<td>0.1300</td>
<td>Import share in public consumption goods</td>
</tr>
<tr>
<td>$\omega_{g,i}$</td>
<td>0.4500</td>
<td>Import share in public investment goods</td>
</tr>
<tr>
<td>τ_{tr}^r</td>
<td>0.7000</td>
<td>Transfer share going to hand-to-mouth households</td>
</tr>
<tr>
<td>τ_{gl}</td>
<td>0.4630</td>
<td>Steady-state share of government consumption expenditure in government spending</td>
</tr>
<tr>
<td>τ_{gi}</td>
<td>0.1170</td>
<td>Steady-state share of public investment expenditure in government spending</td>
</tr>
<tr>
<td>τ_{gr}</td>
<td>0.3000</td>
<td>Steady-state share of transfers in government spending</td>
</tr>
<tr>
<td>α_k</td>
<td>0.8500</td>
<td>Share of private capital in aggregate capital bundle</td>
</tr>
<tr>
<td>b_0</td>
<td>1.0000</td>
<td>Parameter in time-to-build technology of public capital</td>
</tr>
<tr>
<td>b_1</td>
<td>0.0000</td>
<td>Parameter in time-to-build technology of public capital</td>
</tr>
<tr>
<td>$10\phi_{g,r}$</td>
<td>0.0500</td>
<td>Sensitivity of public sector risk premium to deviations of public debt to GDP ratio</td>
</tr>
<tr>
<td>$\phi_{g,a}$</td>
<td>0.0000</td>
<td>Sensitivity of public sector risk premium to deviations of net foreign assets position</td>
</tr>
<tr>
<td>$\psi_{g,c}$</td>
<td>0.0000</td>
<td>Fiscal rule, total government consumption expenditure, anticipated shock fraction</td>
</tr>
<tr>
<td>$\psi_{g,i}$</td>
<td>0.0000</td>
<td>Fiscal rule, public investment expenditure, anticipated shock fraction</td>
</tr>
<tr>
<td>ψ_{tr}</td>
<td>0.0000</td>
<td>Fiscal rule, total transfers expenditure, anticipated shock fraction</td>
</tr>
<tr>
<td>ψ_{rc}</td>
<td>0.0000</td>
<td>Fiscal rule, consumption tax rate, anticipated shock fraction</td>
</tr>
<tr>
<td>ψ_{ty}</td>
<td>0.0000</td>
<td>Fiscal rule, labour income tax rate, anticipated shock fraction</td>
</tr>
<tr>
<td>$\psi_{tw,e}$</td>
<td>0.0000</td>
<td>Fiscal rule, social security contributions rate employer, anticipated shock fraction</td>
</tr>
<tr>
<td>$\psi_{tw,w}$</td>
<td>0.0000</td>
<td>Fiscal rule, social security contributions rate employee, anticipated shock fraction</td>
</tr>
<tr>
<td>ψ_{ls}</td>
<td>0.0000</td>
<td>Fiscal rule, lump-sum tax, anticipated shock fraction</td>
</tr>
</tbody>
</table>

hand-to-mouth households, i.e. $\tau_{tr}^r = 0.7$. We motivate this calibration by the fact that the largest part of public transfers is pensions and most pensioners in Latvia would likely fall into the restricted households type.

The total government spending in the steady state is composed of public consumption expenditure of 46.3% ($\tau_{gl}^c = 0.463$), public investment expenditure of 11.7% ($\tau_{gi}^c = 0.117$), and transfers expenditure of 30% ($\tau_{gr}^c = 0.300$) of the total budget. The remaining smaller expenditure items comprise debt service payments, expenses related to unemployment benefits (modeled separately from other transfers, as they are cyclical), and wasteful government expenditure, as a residual. The quasi-share of private capital in the aggregate capital bundle is set to $\alpha_k = 0.85$, close to Latvijas Banka’s internal estimates of private capital share in total capital in Latvia. As in Coenen et al. (2013), we postulate that building public capital is subject to an additional one-period lag. Therefore, building public capital lasts two quarters instead of the usual one quarter. This implies that we set $b_0 = 1$ and $b_1 = 0$ in the model. Finally, the sensitivity of the risk premium process for the public debt interest rate with respect to deviations of public debt to GDP ratio from its target is set to a small positive number, i.e. $\tilde{\phi}_{g,r} = 0.005$, while
that to the deviations of total net foreign assets position is suspended, i.e. \(\tilde{\phi}_{g,a} = 0 \). We suspend the anticipated fiscal shocks in our benchmark version for ease of interpretation.

3.2 Model estimation

The model is estimated with Bayesian techniques in the Matlab and Dynare environment \((\text{Adjemian et al., 2011})\) using 28 observables, nine of which are fiscal variables. The real variables are in terms of demeaned per capita quarterly growth rates. The data cover the period 1995:Q2–2018:Q3. The model’s estimation strategy is similar to the one of Bušs (2017). The foreign block is estimated separately in line with the assumption used in forecasting rounds that shocks in Latvia do not affect the foreign economy.

Observables. The fiscal observables are: government consumption expenditure, government investment expenditure, government debt to GDP ratio, government transfers, effective consumption tax rate, effective labour income tax rate, effective social security contributions by employees, effective social security contributions by employers, and nominal government bond yield.

The non-fiscal observables are: nominal short-term deposit rate, real private consumption, real total investment, real imports, real exports, real GDP, real labour cost, unemployment rate, consumer price index (CPI) inflation, total investment deflator inflation, GDP deflator inflation, the spread between the bank short-term lending rate to non-financial corporations and short-term deposit rate, real house price.

The following variables enter the estimation of the foreign (SVAR) block: euro area nominal short-term interest rate, euro area CPI inflation, euro area GDP, Latvia’s foreign demand, Latvia’s competitors price on the export side, and the nominal effective exchange rate. The latter is modeled as an AR(1) process.

Estimated shock processes. In total, there are 30 estimated exogenous stochastic variables in our model. In the core block, there are three technology shocks: the stationary neutral technology shock \(\epsilon_t \), the stationary marginal efficiency of investment shock \(\Upsilon_t \), and the unit-root neutral technology shock \(\mu_{z,t} \). Furthermore, there are a shock to consumption preferences \(\zeta_c \), a domestic risk premium shock affecting the relative riskiness of foreign assets compared to domestic assets \(\Phi_t \), a stationary exports technology shock \(\epsilon^x \), and a shock to nominal effective exchange rate growth \(s_t \).

Moreover, there are five mark-up shocks in the core block of the model, one for each type of intermediate good: domestic, \(\tau^d_t \), exports, \(\tau^x_t \), imports for consumption, \(\tau^{m,c}_t \), imports for investment, \(\tau^{m,i}_t \), and imports for exports, \(\tau^{m,x}_t \). The financial frictions block allows for one more shock: a shock to entrepreneurial survival probability \(\gamma_t \), which serves as a wealth shock. The labour market block adds another shock: a shock to the worker outside option \(D_{b,t} \). There are also shocks to each of the five foreign observed variables: euro area GDP \(Y^\text{re}_t \), euro area inflation \(\pi^\text{re}_t \), euro area nominal interest rate \(R^\text{re}_t \), foreign demand \(\text{dem}^*_t \), competitors price on exports side \(\pi^\text{comp}_t \).

The fiscal block adds 11 estimated shocks: two mark-up shocks, for imports of government consumption and government investment; a shock to government consumption expenditure \(G^\text{exp}_{c,t} \), government investment expenditure \(G^\text{exp}_{i,t} \), government transfers \(TR_t \), consumption tax rate \(\tau^c_t \), labour income tax rate \(\tau^y_t \), SSC employer rate \(\tau^w_e \), SSC employee rate \(\tau^w_w \), lump-sum tax \(T_{ls,t} \) (to close the government budget balance), and public sector risk premium \(\tilde{\phi}_{g,t} \).
In addition to the above stochastic processes, there are measurement errors except for the domestic deposit rate and the foreign variables. The variance of the measurement errors is calibrated to correspond to 10% of the variance of each data series. Measurement errors are also applied to the fiscal observables, except for the debt to GDP ratio, for which we assume there are no measurement errors, and the two social security contribution series, for which the size of measurement errors is halved.
Due to the estimation of the non-fiscal part of the model being already described in previous papers (Bušs, 2015; Buss, 2016; Bušs, 2017), we do not repeat the description of the similar results here and refer the interested reader to those papers, or to the Appendix C for the prior-posterior tables.

Estimated fiscal parameters. Here we briefly discuss the estimated parameters of the fiscal block, reported in Table 2. First, with the prior mean for the elasticity of substitution between private and public consumption, ν_c, set to 0.9 and the posterior being 0.83, the data provide evidence for moderate complementarity between private and public consumption. Second, when the prior mean for the elasticity of substitution between private and public capital is set to below unity, the posterior goes to close to unity; so in our benchmark version the prior mean is set above unity (1.5), with the posterior mode being 1.3. Thus, the estimation results show evidence of moderate substitution between private and public capital. In comparison, the estimation results of Coenen et al. (2013) suggest strong complementary between private and public consumption, and moderate complementarity between private and public capital, in the euro area as a whole. Third, the posterior of the quasi-share of private consumption in the aggregate consumption bundle, α_c, is 0.89 that is slightly above its prior of 0.85, the latter roughly corresponding to the share of private consumption in total consumption in the data.

Fourth, and going to the discussion of the fiscal rules, the priors for the parameters relating fiscal instruments to public debt are set so that the model is dynamically stable; that is, fiscal instruments should at least weakly react to public debt deviations from target in a manner to reduce debt deviations. The estimated posterior modes, in several cases, are not far from their priors, suggesting some of these parameters are weakly identified. Fifth, with priors for the fiscal instrument reaction to debt growth centered around zero, the posterior modes suggest (weak) stabilization of public debt growth, namely, government consumption and investment decreasing and most tax rates increasing when faced with debt growth. The fiscal rule parameters relating to debt and debt growth are likely to be influenced mostly by the 2009-recession episode, though.

Lastly, the estimated parameters relating fiscal instruments to output gap suggest fiscal instruments have been weakly pro-cyclical; that is, setting prior means to zero, posterior modes suggest that both public consumption and public investment have positively reacted to the output gap. Also, a couple of the according parameters for effective tax rates (incl. consumption tax) are negative, also suggesting a pro-cyclical fiscal nature; yet, for revenue side, one cannot exclude that the pro-cyclical nature of effective tax rates are driven by a pro-cyclical tax base, a countercyclical shadow economy, or endogenous private sector expenditure switching (Bems and di Giovanni, 2016).

3.3 Data fit

As this model is created for scenario analysis purposes, which may involve building alternative scenarios around the baseline using conditional forecasts, we pay particular attention to our model’s data fit and its dynamic behaviour in terms of projections.
Figure 2: Data fit and forecasting

Notes: Data are in solid blue, iterated forecasts are in dotted black. All variables are in net of their steady-state values. Expenditure components are in real terms.
Figure 2 contains the results from our pseudo real-time forecasting exercise that allows us to evaluate the data fit of the model. The figure shows the data in solid lines and the iterated forecasts in dotted lines for the whole estimation sample. The forecasts are produced with the Kalman filter using our final estimated parameters and shock standard deviations. Despite there are considerable short-term volatility, trends, and level shifts in the data, overall, the model fits the data decently. Particularly, there is no substantial bias in forecasts for any observable, as well as the amplitude and the timing of the cyclical fluctuations are captured relatively accurately. Although for some series the model fit still could be improved, overall we are satisfied with our model’s data fit, which enhances our trust in the model’s simulation results. Model’s simulation properties are reported in the following section.

4 Inspection of Model Behaviour

In this section, we present results from deterministic simulations of our model. First, in Section 4.1 we will inspect the macroeconomic effects of fiscal shocks. The shocks are normalized to imply a change of 0.5% of steady-state GDP on either the revenue or the expenditure side. In Section 4.2 we investigate how specific model elements and assumptions affect the propagation of shocks by changing some feature of the model relative to the benchmark calibration.

4.1 Fiscal shocks

In this section, we shock the following items of the government balance sheet: (i) government investment expenditure, (ii) government consumption expenditure, (iii) government transfers, (iv) consumption tax rate, (v) labour income tax rate, (vi) SSC rate paid by employers, (vii) SSC rate paid by employees, and (viii) capital income tax rate. For fiscal shocks, all fiscal rules are deactivated for the first 8 quarters; after that, only the lump-sum tax rule becomes active. The shock persistence parameters are set to 0.85 for all instruments.

4.1.1 Shock to government investment expenditure

In Figure 3, we depict the impulse responses of key macroeconomic quantities to a positive shock to public investment expenditure. An increase in government investment raises GDP directly, but also crowds in private investment in the first few years, and boosts employment. Demand for workers causes upward pressures on wages. As both employment and wages go up, so does consumption. The favorable developments in the terms of trade caused by the productivity increase are not outweighed by labour costs, therefore exports increases. The overall effect on the economy is lasting for an extensive period of time, which is controlled by the calibrated share of public capital in the aggregate capital bundle, as it is shown in the next section.

4.1.2 Shock to government consumption expenditure

Figure 4 shows the impulse response functions for an increase in government consumption expenditure. As the optimizing households obtain more utility with higher public consumption, they substitute away

13The effects caused by 1% of GDP shocks to fiscal instruments seemed too large in some cases.
from consumption in favor to other budget items such as investment. A rise in private investment and employment increases the consumption of the restricted households. Therefore, an increase of government consumption is a policy that reduces consumption inequality. On net, total consumption decreases for most of the time. Also, exports go down.

Comparing these effects with those of raising government investment, it can be seen that an increase of government consumption yields much less persistence in the effects on GDP. This theme is expanded in Latvijas Banka (2019) that, using this model, considers balancing government’s budget via reducing government’s consumption or investment. It clearly shows that cutting government’s consumption would be more favourable for the economy, especially in the medium term.
Figure 4: Shock to government consumption expenditure

Figure 5: Shock to government transfers (less unemployment benefits)
4.1.3 Shock to government transfers

Figure 5 depicts the impulse responses to a shock to government transfers (less unemployment benefits).

An increase in transfers, of which 70% are directed to the restricted households, raises the consumption of the restricted households. In contrast, the optimizing households decrease their consumption slightly, as they raise investment in face of a higher demand. Higher investment pulls higher employment and wages. Overall, there is a short-lived expansion in GDP, and similar macroeconomic effects to those we saw previously with an increase in government consumption, except mainly for the behaviour in private consumption, which increases in this case.

4.1.4 Shock to consumption tax rate

Figure 6: Shock to consumption tax rate

In the remaining subsections, we analyse shocks to the various revenue components of the government budget. First, we look at an increase in the consumption tax rate (Figure 6), that makes consumption more expensive, reflected in a visible spike in CPI inflation. As a result, consumption decreases. A drop in demand causes a decrease in investment, employment and wages, especially hurting the restricted households who cannot smooth out consumption. A drop in imports caused by a lower demand (and a marginal increase in exports benefiting from lower intermediate goods prices) improves the foreign trade balance.
4.1.5 Shock to labour income tax rate

Impulse response functions to a shock to a labour income tax rate are shown in Figure 7. An increase of the labour income tax rate causes lower incomes for workers. A part of the tax burden is shared with employers via the wage bargaining process. The extent of sharing of the labour tax burden can be partly controlled by a re-calibration of the elasticity of worker outside option to labour market conditions, which we will illustrate in shocking social security contributions below, while in the current case we keep the benchmark calibration. In the benchmark calibration, there is a relatively tight link between worker outside option and labour market conditions. As a result, there are both demand pressures from lower labour incomes and supply pressures from higher labour costs. Consequently, there is drop across consumption, investment, employment, and foreign trade.

Figure 7: Shock to labour income tax rate

4.1.6 Shock to SSC rate paid by an employer

Impulse response functions to a shock to the SSC rate paid by an employer are shown in Figure 8. As economists tend to think that changing SSC-employer would affect mostly the employer in the medium term, here we utilize our specification of the worker outside option and calibrate its elasticity to labour market conditions to zero, such that gross wages would not decrease much. Essentially, this is the case of a standard Nash wage bargaining. As a result, we get that most of the tax burden is taken by the employer, and only a small portion spills over to an employee by decreasing the gross wage. As wages are relatively rigid in this case, there is a protracted period of heightened unemployment in reaction to an increase in the labour cost. Consequently, there is a prolonged decrease in consumption.
Figure 8: Shock to employer SSC rate

Figure 9: Shock to employee SSC rate
There is a slight and short-lived increase in investment due to the shift from labour to the relatively cheaper capital before investment is dragged down. The foreign trade balance deteriorates with an increase in the domestic prices. Overall, we see a protracted economic downturn.

4.1.7 Shock to SSC rate paid by an employee

Figure 9 depicts the impulse responses to a shock to the SSC rate paid by employees. In order to differentiate the effects from SSC-employer and in accord to many economists’ perception that a change in SSC-employer would mostly affect an employee, we set a unit elasticity of the worker outside option to the contemporary labour market conditions. As a result, the largest part of the tax burden is taken by an employee, with only a minor share taken by an employer. Consumption drops mainly due to lower net labour income per worker (less so due to unemployment), sequentially dragging down investment. The effect on output is smaller in both magnitude and duration, compared to that in the case of a raise in SSC-employer.

4.1.8 Shock to capital income tax

A shock to the (physical) capital income tax rate (Figure 10) reduces the rate of return on physical capital. As a result, private investment goes down, dragging down employment, consumption, and GDP. A double-dip consumption pattern results from the divergent paths of consumption of the restricted and the optimizing households. Consumption of the restricted households experiences a sharp decline but recovers with the recovery of labour market due to the adjustment of labour cost. Meanwhile, consumption of optimizing households declines slowly but persistently. Overall, an increase of capital incomes tax rate results in a protracted downturn. A long downturn in investment is partly due to substitution away from physical capital to other assets, such as foreign bonds, which are not subject to a tax increase in this case. Taxing income from all assets, including bonds, thus might reduce the negative effects of capital tax on investment in physical capital.

4.2 Sensitivity analysis of channels in the fiscal block

This section is devoted to the sensitivity analysis of the fiscal block by changing specific model features, one at a time. We then compare the model behaviour with and without a particular feature.14 The benchmark model is the model that employs the parameters reported in Tables 1–2, and with all fiscal rules active, unless stated otherwise.15

4.2.1 Household utility-enhancing government consumption channel

Public consumption is bundled together with private consumption to enhance the utility of households in the benchmark model. In order to better understand the role of utility-enhancing public consumption in the model, we simulate an alternative model where public consumption is not entering the utility bundle. In other words, public consumption becomes wasteful. For this purpose, we set $\alpha_c = 1$ in the alternative model. This implies an increase of α_c by (only) 0.11. The impulse responses of both models to a shock to government consumption expenditure (corresponding to additional government

14Note that most of the modified models we analyse in this section have (slightly) different steady states than the benchmark model, which may affect some of the magnitudes in the reported impulse responses.

15We equalize the persistence of fiscal rules to 0.85.
spending of 0.5% of GDP) are shown in Figure 11. It can be seen that the only stark difference the household utility-enhancing government consumption produces is the negative short-term response of private consumption, as households substitute their consumption for government consumption. Having public consumption as part of total household consumption bundle thus decreases initial co-movement between the government and private consumption.

4.2.2 Import content in public consumption channel

In our benchmark model, a fraction of public consumption is imported from abroad. Alternatively, we assume that all public consumption is sourced domestically. Figure 12 compares the model behaviour for a shock to the government consumption expenditure. The results show that having a share of public consumption that is imported makes the reaction of private consumption more negative, and, overall, dampens the reaction of investment, employment, GDP and inflation, while slightly increases the reaction of the government debt to GDP ratio in the short run.
Figure 11: Shock to government consumption expenditure – useful vs. wasteful public consumption

Figure 12: Shock to government consumption expenditure – with vs. without import content in public consumption
Figure 13: Shock to public investment expenditure – with vs. without productive public capital

Figure 14: Shock to public investment expenditure – with vs. without time-to-build friction
4.2.3 Productivity-enhancing government investment channel

In the benchmark model, government investment is enhancing private productivity. Alternatively, we make public investment wasteful. That is, we assume a zero share of public capital in the total capital bundle \((\alpha_k = 1)\). The model behaviour is compared in Figure 13 for shock to public investment expenditure. An inspection of the impulse responses reveals that, having productive public capital, the private sector does not have to increase investment after this demand shock that much, as the government investment makes the private sector more productive. Therefore, the optimizing households can direct a part of these saved resources to consumption. Therefore, having productive public capital yields considerably more positive reaction of private consumption to public investment, as otherwise there would be a decrease in consumption for a prolonged period of time. As a result, productive public investment channel produces the positive reaction of consumption and GDP to public investment substantially longer, while without this feature the GDP reaction is short lived.

4.2.4 Time-to-build friction in building public capital channel

In the benchmark model, building public capital is subject to a time-to-build friction; i.e. it takes one more quarter for public investment to result in public capital than in the private sector. Alternatively, we assume the absence of this friction (i.e. we set \(b_0 = 0\) and \(b_1 = 1\)). Figure 14 compares the model behaviour for a shock to public investment expenditure. The figure shows that the time-to-build friction induces a one-quarter lag in the public capital dynamics and slightly higher volatility in several macro variables. The intuition is as follows. Given there is a positive shock to public investment, GDP rises. The private sector faces higher demand, thus there is motivation to create jobs and invest. Given that, initially, public investment does not become productivity-enhancing capital, private firms invest their own resources more than in the situation where there were no time-to-build frictions. As productivity-enhancing public capital appears, the private sector disinvests. Thus, the time-to-build friction raises the volatility of private investment, along with other macroeconomic aggregates.

4.2.5 Import content in government investment channel

In the benchmark model, a fraction of public investment is imported from abroad. Alternatively, we assume that all public investment is sourced domestically. Figure 15 compares the model behaviour for a shock to public investment expenditure. Similarly to the results for the import content in public consumption in Section 4.2.2, we see that having import content in government investment dampens (in case of private investment and consumption, makes more negative) the reaction of macroeconomic variables. The differences are more sizeable in the government investment case compared to the government consumption case due to our assumed larger import content in government investment than in government consumption.

4.2.6 Asymmetric transfers channel

In the benchmark model, we assume that government transfers are asymmetrically distributed between optimizing and restricted households. Alternatively, we assume transfers are symmetrically distributed. Figure 16 compares the model behaviour for a positive shock to government transfers. Having a larger share of transfers going to the restricted households amplifies the reaction of private consumption,
Figure 15: Shock to public investment expenditure – with vs. without import content in public investment

4.2.7 Foreign ownership of government debt channel

In the benchmark model, we assume a large part of government debt is held abroad. Alternatively, we assume that all the government debt is held domestically by the optimizing households (i.e. we assume $\omega_h = 1$). The model behaviour for a shock to the government risk premium (by one percentage point) is compared in Figure 17. When all the government debt is held domestically, the increased debt service payments by the government flow into the pockets of optimizing households; therefore, overall, there is only a small impact on the economy, with the optimizing households consuming slightly more. With a substantial share of the government debt held abroad, a higher government risk premium means that more money leaves the economy, therefore, the optimizing households cut their consumption. The consequences on the economy are now negative and considerably larger in magnitude.

A different angle of what the foreign-held government debt channel produces is shown in Figure 18. In this case, we direct all government transfers to the optimizing households, increase those transfers to an amount of 0.5% of GDP, and activate only the lump-sum tax rule. Then we compare two cases - with versus without foreign-held government debt. It can be seen that, if all government debt is held domestically, the well-known Ricardian equivalence holds, as the total amount of money in the economy stays unchanged - the government borrows from the optimizing households and gives back to the optimizing households the same amount. However, with a positive share of the government debt held abroad, the total amount of money in the economy temporarily increases, as part of it flows from
abroad. Therefore, temporarily, the optimizing households have more money, which they utilize in buying foreign bonds. This channel generally breaks the Ricardian equivalence effects. As this channel is not typical in the literature and appears to be not discussed, we consider it in more detail.

The effect on the domestic economy depends on the specification of the domestic risk premia. In the benchmark model, we separate the government sector’s risk premium from the private sector’s risk premium. The former defines the dynamics of the government bond yield, while the latter forms the dynamics of the deposit rate. Historically, the two series have behaved differently; therefore, in order to fit the data, we distinguish the two underlying processes. The government risk premium depends on the government debt-to-GDP ratio (plus a government-specific exogenous shock), while the private sector’s risk premium is subject to the net private foreign assets-to-GDP position (plus a private-sector specific exogenous shock). Note that the total net foreign assets position is stabilized, as the government’s foreign debt is stabilized via active fiscal rules.

Given our risk premia specifications, a transfer to the optimizing households financed at least partly with foreign-held debt prompts the optimizing households to invest the received money in foreign bonds. As a result, the private sector’s risk premium decreases, thus consumption and investment increases, despite an increase of the government’s risk premium due to an increase of its debt.

In order to restore the Ricardian equivalence in face of foreign-held government debt, a specific – not necessarily realistic – constellation of calibrated parameters are needed. One way is to define the
private sector’s risk premium as a function of the total net foreign assets position,

\[R_t = \Phi_t R^*_t, \tag{49} \]

\[\Phi_t = \ln(R_{ss}) - \ln(R^*_{ss}) - \tilde{\phi}_a \left(\frac{A_t - B^*_g, t}{Y_t} - \frac{A - B^*_g}{Y} \right) + \varepsilon^{rP}_t, \tag{50} \]

and, importantly, to remove the government sector’s risk premium process by assuming a constant government bond yield for all times (and being equal to the steady-state deposit rate). Then, as the government’s foreign debt would offset the private sector’s holdings of foreign bonds one-to-one, the deposit rate, and also consumption and investment, would not move.

However, the above assumption that the private sector’s risk premium takes into account the government sector’s foreign debt fully, while the government sector does not face any risk premium, neither from its own debt, nor via spillovers from the private sector’s debt, is a strong one. If it is relaxed, the Ricardian equivalence, in general, does not hold. With the total net foreign assets position in the private sector’s risk premium and a positive government risk premium to its debt level, one can generate a negative reaction of private consumption and investment to an increase of transfers to the optimizing households. To complicate the matters further, one could introduce a partial spillover to private sector’s risk premium from government’s foreign debt via a spillover parameter \(0 \leq \alpha^r \leq 1 \),

\[\Phi_t = \ln(R_{ss}) - \ln(R^*_{ss}) - \tilde{\phi}_a \left(\frac{A_t - \alpha^r B^*_g, t}{Y_t} - \frac{A - \alpha^r B^*_g}{Y} \right) + \varepsilon^{rP}_t. \tag{51} \]

But then the question would arise about the reciprocal feedback from the private sector’s risk
premium to the government sector. When building the model, we considered a non-zero risk premium on the government sector due to the private net foreign assets position via parameter $\phi_{g,a}$ in equation (35), but gave it up by setting it to zero due to the complication it produced in interpreting simulation results. For the same reason, in the benchmark model, we do not allow for the government’s foreign debt in the private sector’s risk premium formula.

5 Conclusion

In this paper, we develop a fiscal DSGE model for Latvia, a small open economy within a monetary union. The key fiscal sector elements comprise government investment, government consumption, import content in government investment and consumption, asymmetric directed transfers to optimizing and restricted households, cyclical unemployment benefits, foreign-held public debt, six types of taxes, and fiscal rules. The model features search-and-matching labour market frictions with pro-cyclical wages, a financial accelerator, import content in consumption, investment and exports, and the foreign sector represented as an SVAR.

The model is estimated using Latvian data for the period 1995:Q2–2018:Q3. We make sure the model fits the data well. Our analysis of the key fiscal shocks reveals that having productive public capital is key to generate a persistent increase in GDP in response to a shock to public investment. Having public consumption in the household utility function weakens the initial positive co-movement between private and public consumption in response to an increase in public consumption, as households substitute their consumption for government consumption. A positive share of import content
in public consumption and investment dampens (and in some cases makes more negative) the effect from fiscal shocks to the domestic economy. The higher the share of transfers directed to the restricted households, the larger is the economic response to a shock of total transfers.

Foreign-held domestic government debt amplifies the economic response to a shock to the government risk premium, as a part of tax-payers’ money is leaving the economy to service the government debt. The channel of foreign-held public debt also generally breaks the Ricardian equivalence in the case of directing lump-sum transfers to the optimizing households. Temporarily, as there is a change of the total money in the economy, the optimizing households alter their holding of the foreign bonds, affecting the domestic risk premium and thus their consumption and investment in response to changes in transfers. The foreign-held government debt channel has not yet received much attention in the literature.

Overall, the rich structure of the model should be able to contribute meaningfully to various fiscal policy studies and scenario analyses in a small open economy within a monetary union, such as Latvia; it has already been extensively field-tested before and during the Covid-19 crisis in studying various fiscal policy alternatives, and, we hope, will be used to shape policy discussions also in the future.
Appendix A First-Order (Marginal Cost) Conditions

A.1 Model without public capital

Intermediate goods firms minimize total costs subject to the production function. Therefore, the optimization problem we solve here is:

$$\min \{ TC_t = \tau I_1 \omega_t R^f_t L_t + \tau I_1 K_t + z^+_t \phi \} ,$$ \hspace{1cm} (52)

subject to,

$$Y_t = (z_t L_t)^{1-\alpha} \varepsilon_t K^{\alpha}_t - z^+_t \phi. \hspace{1cm} (53)$$

The Lagrange multiplier is denoted by mc_t as it equals the real marginal costs function in equilibrium. The first order conditions are:

$$K_t : \tau I_1 R^f_t \omega_t = mc_t (1 - \alpha) z^+_t L^{1-\alpha} \varepsilon_t K^{\alpha}_t. \hspace{1cm} (55)$$

Re-normalized, these conditions become:

$$\tau I_1 R^f_t \bar{\omega}_t = mc_t (1 - \alpha) \varepsilon_t L^{(1-\alpha)/\alpha} R^f_t \bar{r}_t,$$ \hspace{1cm} (59)

These normalized conditions can also be written as follows:

$$mc_t = \frac{\tau I_1 \bar{r}_t}{\alpha \varepsilon_t L^{(1-\alpha)/\alpha}}, \hspace{1cm} (58)$$

$$mc_t = \frac{\tau I_1 \bar{\omega}_t}{(1 - \alpha) \varepsilon_t L^{(1-\alpha)/\alpha}}. \hspace{1cm} (59)$$

Equating Equations (58) and (59) and substituting the following resulting equation, i.e.

$$\frac{k_t}{\mu_{z+t,\mu_{\psi,t}}} = \frac{R^f_t \bar{\omega}_t L_t}{\bar{r}_t^{\alpha}},$$ \hspace{1cm} (60)

into Equation (58) leads to the following expression after some simple algebra:

$$mc_t = \frac{\tau I_1}{\varepsilon_t} \left(\frac{1}{\alpha} \right)^{\alpha} \left(\frac{1}{1 - \alpha} \right)^{1-\alpha} \left(\frac{R^f_t \bar{\omega}_t}{\bar{r}_t^{\alpha}} \right)^{1-\alpha} \hspace{1cm} (61)$$

A.2 Model with public capital in CES bundle

Intermediate goods firms minimize total costs subject to the production function. Therefore, the optimization problem we solve here is:

$$\min \{ TC_t = \tau I_1 \omega_t R^f_t L_t + \tau I_1 K_t + z^+_t \phi \} ,$$ \hspace{1cm} (62)
subject to,

\[Y_t = (z_t L_t)^{1-\alpha} \varepsilon_l \tilde{K}_t^\alpha - z_t^+ \phi, \quad (63) \]

where:

\[\tilde{K}_t = \left(\alpha_k^\varepsilon_t \left(K_t \right) \frac{\alpha_k^{1/\nu_k}}{\nu_k} \right)^{\frac{\nu_k}{\nu_k^+}} + (1 - \alpha_k)^{\frac{1}{\nu_k}} \left(K_{g,t} \right)^{\frac{\nu_k}{\nu_k^+}}. \quad (64) \]

The Lagrange multiplier is denoted by \(mc_t \) as it equals the real marginal costs function in equilibrium.

The first order conditions are:

\[K_t : \tau^d_{t,t} k = mc_t z_t L_t \left(1 - \alpha \right) \mu_{z+t, \mu, \psi,t} \left(\frac{\tilde{K}_t}{\mu_{z+t, \mu, \psi,t}} \right)^{\alpha_k^{1/\nu_k} - 1} K_t^{-\nu_k}, \quad (65) \]

\[L_t : \tau^d_{t,t} \bar{R}_t \omega_t = mc_t (1 - \alpha) z_t \left(1 - \alpha \right) L_t^{-\alpha} \varepsilon_l \tilde{K}_t^\alpha. \quad (66) \]

Re-normalized, these conditions become:

\[\tau^d_{t,t} k = mc_t \alpha_k^{1/\nu_k} \varepsilon_l L_t^{-\alpha} \left(\frac{\tilde{K}_t}{\mu_{z+t, \mu, \psi,t}} \right)^{\alpha_k^{1/\nu_k} - 1} \left(\frac{k_t}{\mu_{z+t, \mu, \psi,t}} \right)^{-\nu_k}, \quad (67) \]

\[\tau^d_{t,t} \bar{R}_t \omega_t = mc_t (1 - \alpha) \varepsilon_l L_t^{-\alpha} \left(\frac{\tilde{K}_t}{\mu_{z+t, \mu, \psi,t}} \right)^{\alpha}. \quad (68) \]

These normalized conditions can also be written as follows:

\[mc_t = \frac{\tau^d_{t,t} k}{\alpha_k^{1/\nu_k} \varepsilon_l \left(\frac{\tilde{K}_t}{\mu_{z+t, \mu, \psi,t}} \right)^{\alpha_k^{1/\nu_k} - 1} \left(\frac{k_t}{\mu_{z+t, \mu, \psi,t}} \right)^{-\nu_k}}, \quad (69) \]

\[mc_t = \frac{\tau^d_{t,t} \bar{R}_t \omega_t}{(1 - \alpha) \varepsilon_l \left(\frac{\tilde{K}_t}{\mu_{z+t, \mu, \psi,t}} \right)^{\alpha}}. \quad (70) \]

Equating Equations (69) and (70) and substituting the following resulting equation, i.e.

\[\frac{k_t}{\mu_{z+t, \mu, \psi,t}} = \left(\frac{k_t}{R_t \omega_t L_t} \right)^{-\nu_k} \left(\frac{1 - \alpha}{\alpha} \right)^{-\nu_k} \alpha_k \left(\frac{\tilde{K}_t}{\mu_{z+t, \mu, \psi,t}} \right)^{1-\nu_k}, \quad (71) \]

into Equation (69) leads to the following expression after some simple algebra:

\[mc_t = \frac{\tau^d_{t,t} \left(\frac{\tilde{K}_t}{\mu_{z+t, \mu, \psi,t}} \right)^{-\alpha} R_t \omega_t}{1 - \alpha}. \quad (72) \]

Alternatively, equating Equations (69) and (70) and substituting the following resulting equation, i.e.

\[\frac{\tilde{K}_t}{\mu_{z+t, \mu, \psi,t}} = \left(\frac{k_t}{R_t \omega_t L_t} \right)^{\nu_k/(1-\nu_k)} \left(\frac{1 - \alpha}{\alpha} \right)^{\nu_k/(1-\nu_k)} \alpha_k^{\nu_k/(1-\nu_k) - 1} \left(\frac{k_t}{\mu_{z+t, \mu, \psi,t}} \right)^{1/(1-\nu_k)}, \quad (73) \]

into Equation (72) leads to the following expression after some not so simple algebra:

\[mc_t = \frac{\tau^d_{t,t} \left(R_t \omega_t \right)^{\alpha_k^{1/\nu_k} + 1} \left(\frac{k_t}{\mu_{z+t, \mu, \psi,t}} \right)^{\alpha_k^{1/\nu_k} + 1} \left(\frac{k_t}{\mu_{z+t, \mu, \psi,t}} \right)^{1/(1-\nu_k)}}{1 - \alpha}. \quad (74) \]
A.3 Model with public capital as an additional production factor

Intermediate goods firms minimize total costs subject to the production function. Therefore, the optimization problem we solve here is:

$$\min_{\{L_t, K_t\}} \left\{ TC_t = \tau^d_t \omega_t L_t + \tau^d_t r^k_t K_t + z_t^+ \phi \right\},$$

subject to,

$$Y_t = z_t^{1-\alpha-\alpha_k} L_t^{1-\alpha} \varepsilon_t K_t^{\alpha} K_{G,t}^{\alpha_k} - z_t^+ \phi.$$

(75)

(76)

The Lagrange multiplier is denoted by mc_t as it equals the real marginal costs function in equilibrium. The first order conditions are:

$$K_t : \tau^d_t r^k_t = mc_t z_t^{1-\alpha-\alpha_k} L_t^{1-\alpha} \varepsilon_t \alpha K_t^{\alpha-1} (K_{G,t})^{\alpha_k},$$

$$L_t : \tau^d_t R^f_t \omega_t = mc_t (1-\alpha) z_t^{1-\alpha-\alpha_k} L_t^{1-\alpha} \varepsilon_t K_t^{\alpha} (K_{G,t})^{\alpha_k}.$$

(77)

(78)

Re-normalized, these conditions become:

$$\tau^d_t r^k_t = mc_t \varepsilon_t L_t^{1-\alpha} \left(\frac{k_t}{\mu_{z,t} \mu_{\psi,t}} \right)^{\alpha-1} \left(\frac{k_{G,t}}{\mu_{z,t} \mu_{\psi,t}} \right)^{\alpha_k},$$

$$\tau^d_t R^f_t \omega_t = mc_t (1-\alpha) \varepsilon_t L_t^{1-\alpha} \left(\frac{k_t}{\mu_{z,t} \mu_{\psi,t}} \right)^{\alpha} \left(\frac{k_{G,t}}{\mu_{z,t} \mu_{\psi,t}} \right)^{\alpha_k}.$$

(79)

(80)

Note that the definition of z_t^+ changes into the following one:

$$z_t^+ = \Psi_t \frac{1+\alpha_k}{1+\alpha} z_t.$$

(81)

These normalized conditions can also be written as follows:

$$mc_t = \frac{\tau^d_t r^k_t}{\varepsilon_t L_t^{1-\alpha} \left(\frac{k_t}{\mu_{z,t} \mu_{\psi,t}} \right)^{\alpha-1} \left(\frac{k_{G,t}}{\mu_{z,t} \mu_{\psi,t}} \right)^{\alpha_k}},$$

$$mc_t = \frac{\tau^d_t R^f_t \omega_t}{(1-\alpha) \varepsilon_t L_t^{1-\alpha} \left(\frac{k_t}{\mu_{z,t} \mu_{\psi,t}} \right)^{\alpha} \left(\frac{k_{G,t}}{\mu_{z,t} \mu_{\psi,t}} \right)^{\alpha_k}}.$$

(82)

(83)

Equating Equations (82) and (83) and substituting the following resulting equation, i.e.

$$\frac{k_t}{\mu_{z,t} \mu_{\psi,t}} = \frac{R^f_t \omega_t L_t}{r^k_t^{1-\alpha} \left(\frac{k_{G,t}}{\mu_{z,t} \mu_{\psi,t}} \right)^{\alpha_k}},$$

(84)

into Equation (82) leads to the following expression after some simple algebra:

$$mc_t = \frac{\tau^d_t}{\varepsilon_t} \left(\frac{1}{\alpha} \right)^{1-\alpha} \left(\frac{1}{1-\alpha} \right) \left(\frac{1}{r^k_t} \right)^{\alpha} \left(\frac{R^f_t \omega_t}{\mu_{z,t} \mu_{\psi,t}} \right)^{1-\alpha} \left(\frac{k_{G,t}}{\mu_{z,t} \mu_{\psi,t}} \right)^{-\alpha_k}.$$

(85)
Appendix B Foreign Block and Measurement Equations

B.1 Foreign block

The adaptation of the DSGE model for forecasting purposes over the last years has altered the specification of the foreign block to include such observables as the foreign demand (measured as the weighted average imports of the trading partners), the competitors’ prices, as well as the nominal effective exchange rate.

The first five rows below are taken from the previous version of the model, and represent the euro area (EA) output, EA inflation, EA interest rate, the neutral unit-root technological process, and the (suspended in the benchmark model) investment-specific unit-root technological process. The sixth and seventh rows reflect the competitors’ prices and foreign demand, while the last row is the log-difference of the nominal effective exchange rate, modeled as an AR(1) process.

\[
\begin{pmatrix}
\log \left(\frac{y^*}{y} \right) \\
\pi^*_t - \pi^*
\end{pmatrix}
=
\begin{pmatrix}
a_{11} & a_{12} & a_{13} & 0 & 0 & 0 & 0 & 0 & 0 \\
a_{21} & a_{22} & a_{23} & a_{24} & \frac{a_{24} \sigma}{1 - \alpha} & 0 & 0 & 0 \\
a_{31} & a_{32} & a_{33} & a_{34} & \frac{a_{34} \sigma}{1 - \alpha} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \rho_{\mu_z} & 0 & 0 & 0 & 0 \\
a_{61} & a_{62} & 0 & 0 & 0 & a_{66} & a_{67} & 0 \\
a_{71} & 0 & 0 & 0 & 0 & a_{76} & a_{77} & 0
\end{pmatrix}
\begin{pmatrix}
\log \left(\frac{y^*}{y} \right) \\
\pi^*_t - \pi^*
\end{pmatrix}
\]

\[
\begin{pmatrix}
\log \left(\frac{\mu_z}{\mu_z} \right) \\
\pi_f^* - \pi^f \\
\log \left(\frac{y^f}{y^*} \right) \\
\log (s_t)
\end{pmatrix}
=
\begin{pmatrix}
\sigma_{y^*} & 0 & 0 & 0 & 0 & 0 & 0 & c_{17} & 0 \\
c_{21} & \sigma_{\pi^*} & 0 & c_{24} & \frac{c_{24} \sigma}{1 - \alpha} & 0 & 0 & 0 \\
c_{31} & c_{32} & \sigma_{R^*} & c_{34} & \frac{c_{34} \sigma}{1 - \alpha} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \sigma_{\mu_z} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \sigma_{\mu_\psi} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \sigma_{\pi^f} & c_{67} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \sigma_{y^f} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \sigma_s
\end{pmatrix}
\begin{pmatrix}
\varepsilon_{y^*,t} \\
\varepsilon_{\pi^*,t} \\
\varepsilon_{R^*,t} \\
\varepsilon_{\mu_z,t} \\
\varepsilon_{\mu_\psi,t} \\
\varepsilon_{\pi^f,t} \\
\varepsilon_{y^f,t} \\
\varepsilon_{s,t}
\end{pmatrix}
\]

(86)

The variables \(\varepsilon_t\)'s are mean zero, unit variance, Gaussian i.i.d. processes, uncorrelated with each other.

B.2 Measurement equations

Below are the measurement equations linking the model variables to the data. Where present, \(\varepsilon_{i,t}^{me}\) denotes a measurement error for variable \(i\).

Nominal deposit interest rate:

\[
R_{D,t}^{data} = 400(R_t - 1)
\]

(87)
Nominal government bond yield:

\[R_{t}^{\text{data}} = 400(R_{g,t} - 1) \quad (88) \]

Foreign (euro area) nominal interest rate:

\[R_{t}^{\text{*},\text{data}} = 400(R_{t}^{\text{*}} - 1) \quad (89) \]

GDP deflator inflation:

\[\pi_{t}^{d,\text{data}} = 400 \log \pi_{t} - 400 \log \pi + \epsilon_{\pi,t}^{me} \quad (90) \]

CPI inflation (after consumption tax):

\[\pi_{t}^{c,\text{data}} = 400 \log \pi_{t}^{c} - 400 \log \pi^{c} + \epsilon_{\pi,t}^{me} \quad (91) \]

where

\[\pi_{t}^{c} = \pi_{t}^{c} \frac{1 + \tau_{t}^{c}}{1 + \tau_{t-1}^{c}} \quad (92) \]

Investment deflator inflation:

\[\pi_{t}^{i,\text{data}} = 400 \log \pi_{t}^{i} - 400 \log \pi^{i} + \epsilon_{\pi,t}^{me} \quad (93) \]

Foreign (euro area) CPI inflation:

\[\pi_{t}^{\text{*},\text{data}} = 400 \log \pi_{t}^{\text{*}} \quad (94) \]

Competitors’ export price inflation:

\[\pi_{t}^{f,\text{data}} = 400 \log \pi_{t}^{f} \quad (95) \]

GDP quarter-on-quarter growth:

\[\Delta \log y_{t}^{\text{data}} = 100(\log \mu_{z+,t} + \Delta \log y_{t}^{\text{gdp}} - \log \mu_{z+}) + \epsilon_{y,t}^{me} \quad (96) \]

where

\[y_{t}^{\text{gdp}} = y_{t} - p_{t}^{1}a(u_{t}) \frac{\tilde{k}_{t}}{\mu_{Z,t} \mu_{Z+,t}} - \frac{\mu G(\omega_{t}; \sigma_{t-1}) R_{t}^{k} p_{k,t-1}^{k} \tilde{k}_{t}}{\pi_{t} \mu_{Z+,t}} \]

\[- (n_{k+,t}^{\text{c}} Q_{t}^{-1} + n_{k+,t}^{\text{h}}) \chi_{t} L_{t-1} - \Gamma_{g,t} / z_{t}^{+} \quad (97) \]

is the measured GDP without capital utilization costs, entrepreneur monitoring costs, vacancy posting and recruiting costs, and bond adjustment costs.

Foreign (euro area) GDP quarter-on-quarter growth:

\[\Delta \log y_{t}^{\text{*},\text{data}} = 100(\log \mu_{z+,t} + \Delta \log y_{t}^{*} - \log \mu_{z+}) \quad (98) \]
Foreign demand (trading partners’ imports) quarter-on-quarter growth:

\[
\Delta \log y^f_{t,\text{data}} = 100(\log \mu_{z+,t} + \Delta \log y^f_t - \log \mu_{z+})
\]

(99)

Nominal effective exchange rate quarter-on-quarter growth:

\[
\log s_{t,\text{data}} = 100 \log s_t + \varepsilon_{s,t}^{me}
\]

(100)

Private consumption quarter-on-quarter growth:

\[
\Delta \log c_{t,\text{data}} = 100(\log \mu_{z+,t} + \Delta \log c_t - \log \mu_{z+}) + \varepsilon_{c,t}^{me}
\]

(101)

(Total) investment quarter-on-quarter growth:

\[
\Delta \log i_{t,\text{data}} = 100[\log \mu_{z+,t} + \log \mu_{\psi,t} + \Delta \log i_{t,\text{data}}^{\text{tot}}] - 100(\log \mu_{z+} + \log \mu_{\psi}) + \varepsilon_{i,t}^{me}
\]

(102)

where

\[
i_{t,\text{data}}^{\text{tot}} = i_t + g_{i,t}
\]

(103)

is total real investment.

Exports quarter-on-quarter growth:

\[
\Delta \log x_{t,\text{data}} = 100(\log \mu_{z+,t} + \Delta \log x_t - \log \mu_{z+}) + \varepsilon_{x,t}^{me}
\]

(104)

Imports quarter-on-quarter growth:

\[
\Delta \log imp_{t,\text{data}} = 100(\log \mu_{z+,t} + \Delta \log imp_t - \log \mu_{z+}) + \varepsilon_{imp,t}^{me}
\]

(105)

where

\[
imp_t = \left(\begin{array}{c}
c_t^m (p_t^m) \frac{\lambda_{m,c}}{1-\lambda_{m,c}} \\
+ t_i^m (p_t^m) \frac{\lambda_{m,i}}{1-\lambda_{m,i}} \\
+ x_t^m (p_t^m) \frac{\lambda_{m,x}}{1-\lambda_{m,x}} \\
+ g_{c,t}^m (p_t^m) \frac{\lambda_{m,g,c}}{1-\lambda_{m,g,c}} \\
+ g_{i,t}^m (p_t^m) \frac{\lambda_{m,g,i}}{1-\lambda_{m,g,i}} \end{array} \right)
\]

(106)

is total imports, and where the last two rows represent imports for government consumption and government investment.

Real labour cost quarter-on-quarter growth, deflated by after-tax CPI\(^{16}\):

\[
\Delta \log w_{t,lc,\text{data}} = 100(\log \mu_{z+,t} + \Delta \log w_{t,lc} - \log \mu_{z+} + \log \pi_t - \log \pi_{t,c,\text{rc}}) + \varepsilon_{lc,t}^{me}
\]

(107)

\(^{16}\)The default model variable is deflated by GDP deflator but its data counterpart is considerably noisier than that deflated by after-tax CPI; thus, here we transform the model variable in the measurement equation such that the deflator is after-tax CPI, consistent with the data.
where

\[w^{lc}_t = (1 + \tau^{w}_{e,t})\bar{w}_t \]

Unemployment rate quarter-on-quarter growth:

\[\Delta \log Unemp^data_t = 100\Delta \log (1 - L_t) + \varepsilon^{me}_{Unemp,t} \]

Net worth as measured by real house price index, quarter-on-quarter growth:

\[\Delta \log n^data_t = 100(\log \mu_{z+,t} + \Delta \log n_t - \log \mu_{z+}) + \varepsilon^{me}_{n,t} \]

Nominal interest rate spread between lending and risk-free rate:

\[\text{Spread}^data_t = 400(\text{spread}_t - \text{spread}) + \varepsilon^{me}_{\text{Spread},t} \]

where

\[\text{spread}_t = Z_{t+1} - R_t = \frac{\bar{w}_{t+1}p^k_{t+1}}{1 - \frac{\mu_{z+1}}{p^k_{t+1}k_{t+1}}} - R_t \]

Government consumption quarter-on-quarter growth:

\[\Delta \log g^data_{c,t} = 100(\log \mu_{z+,t} + \Delta \log g_{c,t} - \log \mu_{z+}) + \varepsilon^{me}_{g,c,t} \]

Government investment quarter-on-quarter growth:

\[\Delta \log g^data_{i,t} = 100[\log \mu_{z+,t} + \log \mu_{\psi,t} + \Delta \log g_{i,t}] - 100(\log \mu_{z+} + \log \mu_{\psi}) + \varepsilon^{me}_{g,i,t} \]

Government debt-to-GDP ratio:

\[\text{debt}\text{2GDP}^data_t = \frac{D_{g,t}}{Y_t + Y_{t-1} + Y_{t-2} + Y_{t-3}} \]

Government transfers quarter-on-quarter growth:

\[\Delta \log tr^data_t = 100(\log \mu_{z+,t} + \Delta \log tr_t - \log \mu_{z+}) + \varepsilon^{me}_{tr,t} \]

Effective consumption tax rate:

\[\tau^c_{t,\text{data}} = \tau^c_{t} + \varepsilon^{me}_{\tau^c_{t}} \]

Effective labour income tax rate:

\[\tau^y_{t,\text{data}} = \tau^y_{t} + \varepsilon^{me}_{\tau^y_{t}} \]

Effective rate of social security contribution by employer:

\[\tau^{w}_{e,t,\text{data}} = \tau^{w}_{e,t} + \varepsilon^{me}_{\tau^{w}_{e,t}} \]
Effective rate of social security contribution by employee:

$$\tau_{w, \text{data}} = \tau_{w, t} + \varepsilon_{\tau_{w, t}}$$

(120)
Appendix C Calibration and estimation of the non-fiscal part of the model

Table 3: Calibrated parameters, non-fiscal part

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>0.4000</td>
<td>Capital share in production of intermediate goods</td>
</tr>
<tr>
<td>β</td>
<td>0.9995</td>
<td>Time discount factor, optimizing households</td>
</tr>
<tr>
<td>ω_c</td>
<td>0.4500</td>
<td>Import share in consumption goods</td>
</tr>
<tr>
<td>ω_i</td>
<td>0.6500</td>
<td>Import share in investment goods</td>
</tr>
<tr>
<td>ω_x</td>
<td>0.3300</td>
<td>Import share in export goods</td>
</tr>
<tr>
<td>$\tilde{\phi}_a$</td>
<td>0.0100</td>
<td>Elasticity of domestic risk premium to net foreign assets position</td>
</tr>
<tr>
<td>μ_z</td>
<td>1.0031</td>
<td>Steady-state quarterly growth rate of neutral technology</td>
</tr>
<tr>
<td>μ_ψ</td>
<td>1.0000</td>
<td>Steady-state growth rate of investment technology</td>
</tr>
<tr>
<td>$\bar{\pi}$</td>
<td>1.0043</td>
<td>Steady-state gross inflation target</td>
</tr>
<tr>
<td>λ_d</td>
<td>1.3000</td>
<td>Price mark-up for domestic good</td>
</tr>
<tr>
<td>$\lambda_{m,c}$</td>
<td>1.0500</td>
<td>Price mark-up for imported consumption good</td>
</tr>
<tr>
<td>$\lambda_{m,i}$</td>
<td>1.0500</td>
<td>Price mark-up for imported investment good</td>
</tr>
<tr>
<td>$\lambda_{m,x}$</td>
<td>1.0500</td>
<td>Price mark-up for imported exports good</td>
</tr>
<tr>
<td>λ_x</td>
<td>1.0500</td>
<td>Price mark-up for exported good</td>
</tr>
<tr>
<td>ν_f</td>
<td>0.5483</td>
<td>Working capital fraction, intermediate good</td>
</tr>
<tr>
<td>ν^*</td>
<td>0.5483</td>
<td>Working capital fraction, imports</td>
</tr>
<tr>
<td>ν^x</td>
<td>0.5483</td>
<td>Working capital fraction, exports</td>
</tr>
<tr>
<td>λ_r</td>
<td>0.5000</td>
<td>Share of restricted households</td>
</tr>
<tr>
<td>θ^d</td>
<td>0.5000</td>
<td>Technology diffusion parameter (common)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$100W_e/y$</td>
<td>0.1000</td>
<td>Transfers to entrepreneurs</td>
</tr>
</tbody>
</table>

Financial frictions block

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>0.8744</td>
<td>Steady-state fraction of employment (1 - unemployment rate)</td>
</tr>
<tr>
<td>$bshare$</td>
<td>0.1000</td>
<td>Unemployment benefit share of gross wage</td>
</tr>
<tr>
<td>$vshare,%$</td>
<td>0.0000</td>
<td>Vacancy posting cost as share of GDP</td>
</tr>
<tr>
<td>ρ</td>
<td>0.7000</td>
<td>Exogenous survival rate of a match</td>
</tr>
<tr>
<td>σ</td>
<td>0.7392</td>
<td>Unemployment share in matching technology</td>
</tr>
</tbody>
</table>

Notes: This table contains the key calibrated parameters and steady states of the core model.
Table 4: Targeted steady states and selected implied parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Targeted steady states</td>
<td></td>
</tr>
<tr>
<td>$p_x \tilde{\phi}/y$</td>
<td>Exports to gross output</td>
<td>0.6100</td>
</tr>
<tr>
<td>p_i/y</td>
<td>Investment to gross output</td>
<td>0.2200</td>
</tr>
<tr>
<td>$n/(p_k k)$</td>
<td>Firm net worth to capital</td>
<td>0.7000</td>
</tr>
<tr>
<td></td>
<td>Implied parameters</td>
<td></td>
</tr>
<tr>
<td>δ</td>
<td>Capital quarterly depreciation rate</td>
<td>0.0412</td>
</tr>
<tr>
<td>$\tilde{\phi}$</td>
<td>Real exchange rate</td>
<td>0.8867</td>
</tr>
<tr>
<td>γ</td>
<td>Entrepreneurial survival rate</td>
<td>0.9542</td>
</tr>
<tr>
<td>σ_m</td>
<td>Level parameter in matching function</td>
<td>0.6823</td>
</tr>
<tr>
<td>f</td>
<td>Job finding rate</td>
<td>0.6762</td>
</tr>
<tr>
<td>v</td>
<td>Vacancy rate</td>
<td>0.4286</td>
</tr>
<tr>
<td>p_c/y</td>
<td>Private consumption to gross output</td>
<td>0.6477</td>
</tr>
</tbody>
</table>

Notes: This table contains the key targeted steady states in the model and selected implied parameters.
Table 5: Estimated parameters and shocks, non-fiscal part

<table>
<thead>
<tr>
<th>Parameter Description</th>
<th>Prior Mean</th>
<th>Prior St.d.</th>
<th>Posterior Mean</th>
<th>Posterior St.d.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ξ_d Calvo parameter, domestic good</td>
<td>0.75</td>
<td>0.075</td>
<td>0.781</td>
<td>0.017</td>
</tr>
<tr>
<td>ξ_x Calvo parameter, exports</td>
<td>0.75</td>
<td>0.075</td>
<td>0.836</td>
<td>0.022</td>
</tr>
<tr>
<td>$\xi_{m,c}$ Calvo parameter, imports for consumption</td>
<td>0.75</td>
<td>0.075</td>
<td>0.944</td>
<td>0.010</td>
</tr>
<tr>
<td>$\xi_{m,i}$ Calvo parameter, imports for investment</td>
<td>0.75</td>
<td>0.075</td>
<td>0.650</td>
<td>0.032</td>
</tr>
<tr>
<td>κ_d Inflation indexation, domestic good</td>
<td>0.66</td>
<td>0.10</td>
<td>0.809</td>
<td>0.024</td>
</tr>
<tr>
<td>κ_x Inflation indexation, imports</td>
<td>0.50</td>
<td>0.15</td>
<td>0.152</td>
<td>0.043</td>
</tr>
<tr>
<td>$\kappa_{m,c}$ Inflation indexation, imports for consumption</td>
<td>0.50</td>
<td>0.15</td>
<td>0.448</td>
<td>0.077</td>
</tr>
<tr>
<td>$\kappa_{m,i}$ Inflation indexation, imports for investment</td>
<td>0.50</td>
<td>0.15</td>
<td>0.247</td>
<td>0.040</td>
</tr>
<tr>
<td>$\kappa_{m,x}$ Inflation indexation, imports for exports</td>
<td>0.05</td>
<td>0.02</td>
<td>0.048</td>
<td>0.006</td>
</tr>
<tr>
<td>ν^i Working capital share</td>
<td>0.50</td>
<td>0.1</td>
<td>0.548</td>
<td>0.017</td>
</tr>
<tr>
<td>b Habit in consumption</td>
<td>0.65</td>
<td>0.15</td>
<td>0.660</td>
<td>0.056</td>
</tr>
<tr>
<td>$0.1S''$ Investment adjustment costs</td>
<td>0.40</td>
<td>0.15</td>
<td>0.069</td>
<td>0.013</td>
</tr>
<tr>
<td>σ_a Variable capital utilization</td>
<td>0.30</td>
<td>0.1</td>
<td>0.291</td>
<td>0.027</td>
</tr>
<tr>
<td>η_e Elasticity of substitution, domestic good & imports for exports</td>
<td>1.50</td>
<td>0.25</td>
<td>1.349</td>
<td>0.050</td>
</tr>
<tr>
<td>η_c Elasticity of substitution, domestic good & imports for consumption</td>
<td>1.50</td>
<td>0.25</td>
<td>1.668</td>
<td>0.081</td>
</tr>
<tr>
<td>η_i Elasticity of substitution, domestic good & imports for investment</td>
<td>1.50</td>
<td>0.25</td>
<td>1.125</td>
<td>0.044</td>
</tr>
<tr>
<td>η_f Elasticity of substitution, exports & foreign good</td>
<td>1.50</td>
<td>0.25</td>
<td>1.010</td>
<td>0.034</td>
</tr>
<tr>
<td>μ Monitoring cost</td>
<td>0.35</td>
<td>0.075</td>
<td>0.474</td>
<td>0.014</td>
</tr>
<tr>
<td>$F(\hat{\omega})$ Steady-state bankruptcy rate</td>
<td>0.015</td>
<td>0.002</td>
<td>0.020</td>
<td>0.001</td>
</tr>
<tr>
<td>$hshare,%$ Hiring fixed costs</td>
<td>0.20</td>
<td>0.075</td>
<td>0.180</td>
<td>0.042</td>
</tr>
<tr>
<td>ω Worker outside option parameter</td>
<td>0.40</td>
<td>0.075</td>
<td>0.541</td>
<td>0.014</td>
</tr>
<tr>
<td>a'' Power parameter in outside option equation</td>
<td>0.90</td>
<td>0.075</td>
<td>0.891</td>
<td>0.019</td>
</tr>
<tr>
<td>ρ_e Persistence, stationary technology</td>
<td>0.85</td>
<td>0.075</td>
<td>0.911</td>
<td>0.022</td>
</tr>
<tr>
<td>ρ_T Persistence, marginal efficiency of private investment</td>
<td>0.85</td>
<td>0.075</td>
<td>0.579</td>
<td>0.018</td>
</tr>
<tr>
<td>ρ_c Persistence, consumption preference shock</td>
<td>0.85</td>
<td>0.075</td>
<td>0.739</td>
<td>0.028</td>
</tr>
<tr>
<td>ρ_{ϕ} Persistence, domestic risk premium</td>
<td>0.85</td>
<td>0.075</td>
<td>0.959</td>
<td>0.014</td>
</tr>
<tr>
<td>ρ_g Persistence, government spending</td>
<td>0.85</td>
<td>0.075</td>
<td>0.841</td>
<td>0.020</td>
</tr>
<tr>
<td>ρ_γ Persistence, entrepreneurial wealth</td>
<td>0.85</td>
<td>0.075</td>
<td>0.675</td>
<td>0.023</td>
</tr>
<tr>
<td>ρ_e Persistence, exports stationary technology</td>
<td>0.85</td>
<td>0.075</td>
<td>0.869</td>
<td>0.031</td>
</tr>
<tr>
<td>ρ_{bu} Persistence, outside option</td>
<td>0.80</td>
<td>0.075</td>
<td>0.911</td>
<td>0.012</td>
</tr>
</tbody>
</table>

Shock standard deviations

10σ_e Stationary technology	1.0	inf	0.100	0.010
σ_T Marginal efficiency of private investment	0.15	inf	0.101	0.015
σ_c Consumption preference shock	0.15	inf	0.075	0.018
100σ_{ϕ} Domestic risk premium	0.40	inf	0.097	0.009
$\sigma_{x,d}$ Mark-up, domestic good	0.10	inf	0.232	0.070
$\sigma_{x,e}$ Markup, exports	0.40	inf	0.104	0.032
$\sigma_{x,m,c}$ Mark-up, imports for consumption	0.50	inf	0.617	0.264
$\sigma_{x,m,i}$ Mark-up, imports for investment	0.50	inf	0.926	0.283
$\sigma_{x,m,x}$ Mark-up, imports for exports	0.50	inf	0.305	0.099
10σ_{γ} Entrepreneurial wealth	0.15	inf	0.280	0.026
10σ_{ϵ} Exports stationary technology	0.15	inf	0.169	0.033
10σ_{bu} Outside option	0.10	inf	0.189	0.022

Model fit statistic

\mathcal{L} Log marginal likelihood (Laplace approximation) -4491.7

Notes: This table contains the estimated parameters for the core model. Note that truncated priors, denoted by Γ, with no mass below 1.01 have been used for the elasticity parameters $\eta_j, j = \{x, c, i, f\}$.
Table 6: Estimated foreign SVAR parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Prior Distr.</th>
<th>Mean</th>
<th>St.d.</th>
<th>Posterior Mode</th>
<th>St.d.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ_{μ_z}</td>
<td>Persistence, unit-root technology</td>
<td>β</td>
<td>0.60</td>
<td>0.075</td>
<td>0.707</td>
<td>0.057</td>
</tr>
<tr>
<td>a_{11}</td>
<td>Persistence, euro area output</td>
<td>β</td>
<td>0.90</td>
<td>0.075</td>
<td>0.994</td>
<td>0.014</td>
</tr>
<tr>
<td>a_{22}</td>
<td>Persistence, euro area inflation</td>
<td>β</td>
<td>0.30</td>
<td>0.075</td>
<td>0.310</td>
<td>0.063</td>
</tr>
<tr>
<td>a_{33}</td>
<td>Persistence, euro area interest rate</td>
<td>β</td>
<td>0.70</td>
<td>0.075</td>
<td>0.668</td>
<td>0.060</td>
</tr>
<tr>
<td>a_{66}</td>
<td>Persistence, competitors price inflation</td>
<td>β</td>
<td>0.30</td>
<td>0.075</td>
<td>0.304</td>
<td>0.059</td>
</tr>
<tr>
<td>a_{77}</td>
<td>Persistence, foreign demand</td>
<td>β</td>
<td>0.85</td>
<td>0.075</td>
<td>0.941</td>
<td>0.023</td>
</tr>
<tr>
<td>ρ_s</td>
<td>Persistence, nominal effective exchange rate</td>
<td>β</td>
<td>0.20</td>
<td>0.075</td>
<td>0.132</td>
<td>0.024</td>
</tr>
<tr>
<td>a_{12}</td>
<td>Foreign SVAR parameter</td>
<td>N</td>
<td>0.00</td>
<td>0.10</td>
<td>0.012</td>
<td>0.082</td>
</tr>
<tr>
<td>a_{13}</td>
<td>Foreign SVAR parameter</td>
<td>N</td>
<td>-0.10</td>
<td>0.05</td>
<td>-0.059</td>
<td>0.037</td>
</tr>
<tr>
<td>a_{21}</td>
<td>Foreign SVAR parameter</td>
<td>N</td>
<td>0.10</td>
<td>0.10</td>
<td>0.071</td>
<td>0.032</td>
</tr>
<tr>
<td>a_{23}</td>
<td>Foreign SVAR parameter</td>
<td>N</td>
<td>-0.10</td>
<td>0.05</td>
<td>-0.097</td>
<td>0.049</td>
</tr>
<tr>
<td>a_{24}</td>
<td>Foreign SVAR parameter</td>
<td>N</td>
<td>0.00</td>
<td>0.10</td>
<td>0.024</td>
<td>0.064</td>
</tr>
<tr>
<td>a_{26}</td>
<td>Foreign SVAR parameter</td>
<td>N</td>
<td>0.00</td>
<td>0.05</td>
<td>0.010</td>
<td>0.014</td>
</tr>
<tr>
<td>a_{31}</td>
<td>Foreign SVAR parameter</td>
<td>N</td>
<td>0.00</td>
<td>0.05</td>
<td>0.106</td>
<td>0.019</td>
</tr>
<tr>
<td>a_{32}</td>
<td>Foreign SVAR parameter</td>
<td>N</td>
<td>0.10</td>
<td>0.005</td>
<td>0.099</td>
<td>0.005</td>
</tr>
<tr>
<td>a_{34}</td>
<td>Foreign SVAR parameter</td>
<td>N</td>
<td>0.00</td>
<td>0.005</td>
<td>0.002</td>
<td>0.005</td>
</tr>
<tr>
<td>a_{61}</td>
<td>Foreign SVAR parameter</td>
<td>N</td>
<td>0.00</td>
<td>0.05</td>
<td>-0.009</td>
<td>0.047</td>
</tr>
<tr>
<td>a_{62}</td>
<td>Foreign SVAR parameter</td>
<td>N</td>
<td>0.00</td>
<td>0.05</td>
<td>0.007</td>
<td>0.052</td>
</tr>
<tr>
<td>a_{67}</td>
<td>Foreign SVAR parameter</td>
<td>N</td>
<td>0.00</td>
<td>0.05</td>
<td>-0.023</td>
<td>0.022</td>
</tr>
<tr>
<td>a_{71}</td>
<td>Foreign SVAR parameter</td>
<td>N</td>
<td>0.00</td>
<td>0.05</td>
<td>0.001</td>
<td>0.048</td>
</tr>
<tr>
<td>a_{76}</td>
<td>Foreign SVAR parameter</td>
<td>N</td>
<td>0.20</td>
<td>0.05</td>
<td>0.246</td>
<td>0.047</td>
</tr>
<tr>
<td>c_{17}</td>
<td>Foreign SVAR parameter</td>
<td>N</td>
<td>0.10</td>
<td>0.10</td>
<td>0.096</td>
<td>0.017</td>
</tr>
<tr>
<td>c_{21}</td>
<td>Foreign SVAR parameter</td>
<td>N</td>
<td>0.05</td>
<td>0.05</td>
<td>0.018</td>
<td>0.049</td>
</tr>
<tr>
<td>c_{31}</td>
<td>Foreign SVAR parameter</td>
<td>N</td>
<td>0.00</td>
<td>0.05</td>
<td>0.111</td>
<td>0.033</td>
</tr>
<tr>
<td>c_{32}</td>
<td>Foreign SVAR parameter</td>
<td>N</td>
<td>0.00</td>
<td>0.05</td>
<td>0.063</td>
<td>0.022</td>
</tr>
<tr>
<td>c_{24}</td>
<td>Foreign SVAR parameter</td>
<td>N</td>
<td>-0.05</td>
<td>0.05</td>
<td>-0.067</td>
<td>0.045</td>
</tr>
<tr>
<td>c_{34}</td>
<td>Foreign SVAR parameter</td>
<td>N</td>
<td>0.00</td>
<td>0.005</td>
<td>0.001</td>
<td>0.005</td>
</tr>
<tr>
<td>c_{67}</td>
<td>Foreign SVAR parameter</td>
<td>N</td>
<td>0.20</td>
<td>0.05</td>
<td>-0.023</td>
<td>0.022</td>
</tr>
</tbody>
</table>

Shock standard deviations

<table>
<thead>
<tr>
<th>Shock</th>
<th>Description</th>
<th>Prior Distr.</th>
<th>Mean</th>
<th>St.d.</th>
<th>Posterior Mean</th>
<th>St.d.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$100\sigma_{\mu_z}$</td>
<td>Unit root technology</td>
<td>Γ^{-1}</td>
<td>0.25</td>
<td>inf</td>
<td>0.223</td>
<td>0.038</td>
</tr>
<tr>
<td>$100\sigma_{g\text{ea}}$</td>
<td>Euro area GDP</td>
<td>Γ^{-1}</td>
<td>0.20</td>
<td>inf</td>
<td>0.256</td>
<td>0.031</td>
</tr>
<tr>
<td>$100\sigma_{\pi\text{ea}}$</td>
<td>Euro area inflation</td>
<td>Γ^{-1}</td>
<td>0.25</td>
<td>inf</td>
<td>0.256</td>
<td>0.019</td>
</tr>
<tr>
<td>$100\sigma_{R\text{ea}}$</td>
<td>Euro area interest rate</td>
<td>Γ^{-1}</td>
<td>0.05</td>
<td>inf</td>
<td>0.048</td>
<td>0.005</td>
</tr>
<tr>
<td>$10\sigma_{dem\text{*}}$</td>
<td>Foreign demand</td>
<td>Γ^{-1}</td>
<td>0.20</td>
<td>inf</td>
<td>0.239</td>
<td>0.017</td>
</tr>
<tr>
<td>$10\sigma_{\pi\text{comp*}}$</td>
<td>Competitors price on exports side</td>
<td>Γ^{-1}</td>
<td>0.15</td>
<td>inf</td>
<td>0.160</td>
<td>0.013</td>
</tr>
<tr>
<td>$10\sigma_{s}$</td>
<td>Nominal effective exchange rate</td>
<td>Γ^{-1}</td>
<td>0.15</td>
<td>inf</td>
<td>0.157</td>
<td>0.015</td>
</tr>
</tbody>
</table>

Notes: This table contains the estimated parameters for the foreign economy. Informative priors are used to generate plausible impulse response functions.
References

